Skip to main content

Class 12 Question Paper Alternative English Vibyor AHSEC 2017

Alternative English  Year - 2017 Full Marks : 100 

Matrices class 12 Ncert Solutions Maths

                                        
                                               Chapter 3 Matrices Class 12 Ncert Solutions                                             

                                                                Exercise 3.1



1. In the matrix A=\( \begin{bmatrix} 2&5&19&-7\\ 35&-2&\frac{5}{2}&12\\\sqrt3&1&-5&17\\ \end{bmatrix} \), write : (i) The order of the matrix,   (ii)The number of elements,
(iii) Write the elements \(a_{13},a_{21},a_{33},a_{24},a_{23}.\)

Sol.  (i) The given matrix have 3rows and 4 columns, so the order of the matrix is \(3\times4\)
(ii)The number of elements is 12 .
(iii)\(a_{13}=19,a_{21}=35,a_{33}=-5,a_{24}=12,a_{23}=\frac{5}{2}.\)


2. If a matrix has 24 elements, what are the possible orders it can have?What if it has 13 elemnts?

Sol.  If a matrix have 24 elements then we can have matrix with:
(i)1 row and 24 columns i.e. order=\(1\times24\)
(ii)2 rows and 12 columns i.e. order= \(2\times12\)
(iii) 3 rows and 8 columns i.e. order =\(3\times8\)
(iv) 4 rows and 6 columns i.e. order =\(4\times6\)
(v) 6 rows and 4 columns i.e. order=\(6\times4\)
(vi) 8 rows and 3 columns i.e. order =\(8\times4\)
(vii) 12 rows and 2 columns i.e. order =\(12\times2\)
(viii) 24 rows ans 1 columns i.e. order=\(24\times1\)

Similarly, if the matrix has 13 elements it can only have two possible orders \(1\times 13\) and \(13\times1 \)


3. If a matrix has 18 elements, what are the possible orders it can have? What if it has 5 elements?

Sol.  If a matrix have 18 elements then we can have matrix with:
(i)1 row and 18 columns i.e. order=\(1\times18\)
(ii)2 rows and 9 columns i.e. order= \(2\times9\)
(iii) 3 rows and 6 columns i.e. order =\(3\times6\)
(iv) 6 rows and 3 columns i.e. order =\(6\times3\)
(v) 9 rows and 2 columns i.e. order=\(9\times2\)
(vi) 18 rows and 1 columns i.e. order =\(18\times1\)

Similarly, if it has 5 elements it can only have two possible orders  \(1\times 5\) and \(5\times1 \). Since 5 is a prime number and it has only 2 factors, 1 and 5.


4. Construct a \(2\times2\) matrix, A=[\(a_{ij}\)], whose elemnts are given by: 
(i) \((a_{ij})={(i+j)^2\over2}\)   (ii) \((a_{ij})=\frac{i}{j}\)   (iii) \((a_{ij})={(i+2j)^2\over2}\) 

Sol. To construct a \(2\times2\) matrix we need the elements \(a_{11},a_{12},a_{21},a_{22}\).Since  a \(2\times2\) matrix A is given as  \[A= \begin{bmatrix}a_{11}&a_{12}\\a_{21}&a_{22}\\\end{bmatrix}\]
(i) \((a_{ij})={(i+j)^2\over2}\)
Therefore, \((a_{11})={(1+1)^2\over2}=\frac{4}{2}=2\)
\((a_{12})={(1+2)^2\over2}=\frac{9}{2}\)
\((a_{21})={(2+1)^2\over2}=\frac{9}{2}\)
\((a_{22})={(2+2)^2\over2}=\frac{16}{2}=8\)
Hence required matrix is
\[A= \begin{bmatrix}2&\frac{9}{2}\\ \frac{9}{2}&8\\\end{bmatrix}\]

(ii)\((a_{ij})=\frac{i}{j}\)
Therefore, \((a_{11})={1\over1}=1\)
\((a_{12})={1\over2}=\frac{1}{2}\)
\((a_{21})={2\over1}=2\)
\((a_{22})={2\over2}=1\)
Hence required matrix is
\[A= \begin{bmatrix}1&\frac{1}{2}\\ 2&1\\\end{bmatrix}\]

(iii)\((a_{ij})={(i+2j)^2\over2}\)
Therefore, \((a_{11})={(1+2\times1)^2\over2}=\frac{3^2}{2}=\frac{9}{2}\)
\((a_{12})={(1+2\times2)^2\over2}=\frac{5^2}{2}=\frac{25}{2}\)
\((a_{21})={(2+2\times1)^2\over1}=\frac{4^2}{1}=8\)
\((a_{22})={(2+2\times2)^2\over2}=\frac{6^2}{2}=\frac{36}{2}=18\)
Hence required matrix is
\[A= \begin{bmatrix}\frac{9}{2}&\frac{25}{2}\\ 8&18\\\end{bmatrix}\]



5. Construct a \(3\times4\) matrix, A=[\(a_{ij}\)], whose elemnts are given by: 
(i) \((a_{ij})={1\over2}\lvert-3i+j\rvert \)   (ii) \((a_{ij})=2i-j\)

To construct a \(3\times4\) matrix we need the elements \(a_{11},a_{12},a_{13},a_{14},a_{21},a_{22},a_{23},a_{24},a_{31},a_{32},a_{33},a_{34},\).

Since  a \(3\times4\) matrix A is given as
  \[A= \begin{bmatrix}a_{11}&a_{12}&a_{13}&a_{14}\\a_{21}&a_{22}&a_{23}&a_{24}\\a_{31}&a_{32}&a_{33}&a_{34}\\\end{bmatrix}\]

(i)  \((a_{ij})={1\over2}\lvert-3i+j\rvert\) 
Therefore,\((a_{11})={1\over2}\lvert-3\times1+1\rvert\) = \({1\over2}\lvert-2\rvert\)=\(\frac{1}{2}\times2=1\)

\((a_{12})={1\over2}\lvert-3\times1+2\rvert\) =\({1\over2}\lvert-1\rvert\)=\(\frac{1}{2}\times1=\frac{1}{2}\)

\((a_{13})={1\over2}\lvert-3\times1+3\rvert\) =\({1\over2}\lvert0\rvert\)=\(\frac{1}{2}\times0=0\)

\((a_{14})={1\over2}\lvert-3\times1+4\rvert\) =\({1\over2}\lvert1\rvert\)=\(\frac{1}{2}\times1=\frac{1}{2}\)

\((a_{21})={1\over2}\lvert-3\times2+1\rvert\) =\({1\over2}\lvert-5\rvert\)=\(\frac{1}{2}\times5=\frac{5}{2}\)

\((a_{22})={1\over2}\lvert-3\times2+2\rvert\) =\({1\over2}\lvert-4\rvert\)=\(\frac{1}{2}\times4=2\)

\((a_{23})={1\over2}\lvert-3\times2+3\rvert\) =\({1\over2}\lvert-3\rvert\)=\(\frac{1}{2}\times3=\frac{3}{2}\)

\((a_{24})={1\over2}\lvert-3\times2+4\rvert\) =\({1\over2}\lvert-2\rvert\)=\(\frac{1}{2}\times2=\frac{2}{2}=1\)

\((a_{31})={1\over2}\lvert-3\times3+1\rvert\) =\({1\over2}\lvert-8\rvert\)=\(\frac{1}{2}\times8=\frac{8}{2}=4\)


\((a_{32})={1\over2}\lvert-3\times3+2\rvert\) =\({1\over2}\lvert-7\rvert\)=\(\frac{1}{2}\times7=\frac{7}{2}\)


\((a_{33})={1\over2}\lvert-3\times3+3\rvert\) =\({1\over2}\lvert-6\rvert\)=\(\frac{1}{2}\times6=\frac{6}{2}=3\)


\((a_{34})={1\over2}\lvert-3\times3+4\rvert\) =\({1\over2}\lvert-5\rvert\)=\(\frac{1}{2}\times5=\frac{5}{2}\)

Hence the required matrix is
  \[A= \begin{bmatrix}1&\frac{1}{2}&0&\frac{1}{2}\\ \frac{5}{2}&2&\frac{3}{2}&1\\4&\frac{7}{2}&3&\frac{5}{2}\\\end{bmatrix}\]


(ii) \((a_{ij})=2i-j\)
Therefore, \((a_{11})=2\times1-2=1\)

\((a_{12})=2\times1-2=0\)

\((a_{13})=2\times1-3=-1\)

\((a_{14})=2\times1-4=-2\)

\((a_{21})=2\times2-1=3\)

\((a_{22})=2\times2-2=2\)

\((a_{23})=2\times2-3=1\)

\((a_{24})=2\times2-4=0\)

\((a_{31})=2\times3-1=5\)

\((a_{32})=2\times3-2=4\)

\((a_{33})=2\times3-3=3\)

\((a_{34})=2\times3-4=2\)

Hence the required matrix is 
  \[A= \begin{bmatrix}1&0&-1&-2\\ 3&2&1&0\\5&4&3&2\\ \end{bmatrix}\]


6. Find the values of x,y and z from the following equations:

(i)\(\begin{bmatrix}4&3\\x&5\\ \end{bmatrix}=\begin{bmatrix} y&z\\1&5\\ \end{bmatrix}\)       (ii) \(\begin{bmatrix}x+y&2\\5+z&xy\\ \end{bmatrix}==\begin{bmatrix}6&2\\5&8\\ \end{bmatrix}\)           (iii) \(\begin{bmatrix}x+y+z\\x+z\\y+z\\ \end{bmatrix}=\begin{bmatrix}9\\5\\7\\ \end{bmatrix}\)


Sol. (i) By equality of two matrices, equating the corresponding element we get
4=y   3=z and x=1

(ii) Equating the corresponding element by the equality of matrices we have
\begin{align}
x+y =6 &&\text{--------------}\tag1\\
5+z=5 &&\text{--------------}\tag2\\
xy=8 &&\text{--------------}\tag3\\
\end{align}

From (2) we get z=0
From (1) we get y=6-x
putting the value of y in (3) we get
\begin{align}
x(6-x)=8\\
6x-x^2=8\\
x^2-6x+8=0\\
x^2 -4x-2x+8=0\\
x(x-4)-2(x-4)=0\\
(x-2)(x-4)=0\\
\implies x=4\\or, x=2\\
\end{align}

If x=4 , y=2 and if x=2 y =4 .
So we have two possible solutions

x=4, y=2, z=0 or x=2, y=4, z=0

(iii) Equating the corresponding elements by the equality of matrices we have 

\begin{align}
x+y+z=9&&\tag1\\
x+z=5&&\tag2\\
y+z=7&&\tag3\\

\end{align}

Subtracting (2) from (1) we get y= 4
Subtracting (3) from (1) we get x=2
Putting the value of y in (3) we get z=3.


7. Find the value of a,b,c and d from the equation:
\[\begin{bmatrix}a-b&2a+c\\2a-b&3c+d\\ \end{bmatrix}=\begin{bmatrix} -1&5\\0&13\\ \end{bmatrix}\]  

Sol. Equating the corresponding elements by the equality of matrices we get

\begin{align}
a-b=-1&&\tag1\\
2a+c=5&&\tag2\\
2a-b=0&&\tag3\\
3c+d=13&&\tag4\\

\end{align}

From (3) we get 2a=b. Putting this value of b in (1) we get a-2a =-1 \(\implies\)-a = -1\(\implies\) a = 1. So b=2a=2\(\times1\)=2.
Putting a = 1 in (2) we get 2+c = 5\(\implies\) c = 5-2\(\implies\) c=3.
Putting c =3 in (4) we get 9 + d = 13\(\implies\) d=4
Hence a = 1, b = 2, c = 3, d = 4.


8. A=\([a_{ij}]_{m\timesn}\) is a square matrix if

(A) m\(\lt\)n   (B) m\(\gt\)n    (C) m = n    (D) None of these

Sol. A aquare matrix has equal no. of rows and columns . m is the no of rows and n is the no. of columns .So, m = n . The correct anser is option (C)

9. Which of the given values of x and y make the following pair of matrices equal
\(\begin{bmatrix}3x + 7&5\\y+1&2-3x\\ \end{bmatrix}, \begin{bmatrix} 0&y-2\\8&4\\ \end{bmatrix}\)

(A) x = \(frac{-1}{3}\), y = 7  (B) Not possible to find    (C) y = 7,  x = \(\frac{-2}{3}\)    (D) \(x=\frac{-1}{3},  y = \frac{-2}{3}\)


Sol.  Equating corresponding  elements by the equality of matrices we get  y=7 but for x we get two different values at the same time x=\(\frac{-7}{3}\) ans x= \(\frac{2}{3}\) which is absurd . So the correct option is (B)

10. The number of all possible matrices of order 3\(\times\)3 with each entry 0 or 1 is :

(A) 27  (B) 18    (C) 81   (D) 512

Sol.  For a 3\(\times\)3 we have a total of 9 elements . Each element can have two entries either 0 or 1. So there is two ways of filling one element. Hence, total no. of ways of filling 9 elements is \(2^9=512 ways\). So, 512 different matrices are possible. The correct answer is option (D).

Comments

Popular posts from this blog

Class 12 Ncert Solutions English Flamingo The Memoirs of a Chota Sahib

                                                               The Memoirs of a Chota Sahib                                                                                by John Rowntree Think as you Read  Answers for other Lessons A Thing of Beauty The Roadside Stand The Last Lesson Going Places 1. Briefly describe the scene observed by the author from the veranda of his bungalow on the bank of the Brahmaputra. Ans: The author Rowntree described that from the veranda of his bungalow he had a splendid view of the river and its shipping and, beyond, the Himalayas. In the forground was Peacock Island, with ...

Class 12 Ncert Solutions for English Flamingo The Last Lesson

Class 12 Ncert Solutions for English Flamingo The Last Lesson Think as you read 1. What was Franz expected to be prepared with for school that day? Ans. Franz was expected to be prepared with participles that day as M.Hamel would question them on participles. But Franz had not learnt anything about participles. 2. What did Franz notice that was unusual about the school that day? Ans.  Franz noticed that the school was  calm and quiet like a Sunday morning. On any other day  there would be great commotion in the school caused by the opening and closing of the desks,lessons being repeated loudly in unison and rapping of the teacher's ruler on the table. 3. What had been put up in the bulletin-board? Ans.  Orders had been put up in the bulletin board to teach German  in the schools of Alsace and Lorraine by the Germans. 4. What changes did the order from Berlin cause in school that day? Ans. Because of the order that came from Berlin M.Hamel was go...

Class 12 English Ncert solutions The Roadside Stand

Class 12 English Ncert solutions The Roadside Stand                                                                                                                                       The Roadside Stand                                                                                     by Robert Frost Think it out 1. The city folk who drove through the countryside hardly paid any heed to the roadside stand or to the people who ran it. ...