Alternative English Year - 2017 Full Marks : 100
Inverse trigonometric function. Exercise 2.2
1. 3sin-1x=sin-1(3x - 4x3), x∈[ -\(\frac{1}{2}\), \(\frac{1}{2}\)]
Sol. Let sin-1x=y. Then x=sin y. Now
sin-1(3x - 4x3)
=sin-1(3siny-4sin3y)
=sin-1(sin 3y) ∵(3siny-4sin3y)=sin 3y
=3y=3sin-1x. Hence proved.
2. 3cos-1x=cos-1(4x3 - 3x), x∈[ -\(\frac{1}{2}\), 1]
Sol. Let cos-1x=y. Then x=cos y. Now
cos-1(4x3 - 3x)
=cos-1(4cos3y - 3cosy)
=cos-1(cos 3y) ∵4cos3y - 3cosy=cos 3y
=3y=3cos-1x. Hence proved.
3. tan-1(\(\frac{2}{11}\) )+ tan-1(\(\frac{7}{24}\) ) =tan-1(\(\frac{1}{2}\) )
Sol. By property 5(i) in your textbook (page 44), we have
L.H.S = tan-1(\(\frac{2}{11}\) )+ tan-1(\(\frac{7}{24}\) )
= tan-1(\(\frac{\frac{2}{11}+\frac{2}{24}}{1-\frac{2}{11}\ x \frac{7}{24}}\) )
=tan-1(\(\frac{\frac{48+77}{11\times24}}{\frac{11\times24-14}{11\times24} }\) )
= tan-1(\(\frac{\frac{125}{264}}{\frac{250}{264} }\) )
=tan-1(\(\frac{125}{250} \) )
=tan-1(\(\frac{1}{2} \) )
=R.H.S Hence proved.
Sol. By property 6(iii) (page 44) 2tan-1x=tan-1(\(\frac{2x}{1-x^2}\) )
We have 2tan-1(\(\frac{1}{2}\) )= tan-1(\(\frac{2\times\frac{1}{2}}{1-\frac{1}{2^2}}\) )
1. 3sin-1x=sin-1(3x - 4x3), x∈[ -\(\frac{1}{2}\), \(\frac{1}{2}\)]
Sol. Let sin-1x=y. Then x=sin y. Now
sin-1(3x - 4x3)
=sin-1(3siny-4sin3y)
=sin-1(sin 3y) ∵(3siny-4sin3y)=sin 3y
=3y=3sin-1x. Hence proved.
2. 3cos-1x=cos-1(4x3 - 3x), x∈[ -\(\frac{1}{2}\), 1]
Sol. Let cos-1x=y. Then x=cos y. Now
cos-1(4x3 - 3x)
=cos-1(4cos3y - 3cosy)
=cos-1(cos 3y) ∵4cos3y - 3cosy=cos 3y
=3y=3cos-1x. Hence proved.
3. tan-1(\(\frac{2}{11}\) )+ tan-1(\(\frac{7}{24}\) ) =tan-1(\(\frac{1}{2}\) )
Sol. By property 5(i) in your textbook (page 44), we have
L.H.S = tan-1(\(\frac{2}{11}\) )+ tan-1(\(\frac{7}{24}\) )
= tan-1(\(\frac{\frac{2}{11}+\frac{2}{24}}{1-\frac{2}{11}\ x \frac{7}{24}}\) )
=tan-1(\(\frac{\frac{48+77}{11\times24}}{\frac{11\times24-14}{11\times24} }\) )
= tan-1(\(\frac{\frac{125}{264}}{\frac{250}{264} }\) )
=tan-1(\(\frac{125}{250} \) )
=tan-1(\(\frac{1}{2} \) )
=R.H.S Hence proved.
4. 2tan-1(\(\frac{1}{2}\) )+ tan-1(\(\frac{1}{7}\) ) =tan-1(\(\frac{31}{17}\) )
Sol. By property 6(iii) (page 44) 2tan-1x=tan-1(\(\frac{2x}{1-x^2}\) )
We have 2tan-1(\(\frac{1}{2}\) )= tan-1(\(\frac{2\times\frac{1}{2}}{1-\frac{1}{2^2}}\) )
⇒2tan-1(\(\frac{1}{2}\) )= tan-1(\(\frac{1}{1-\frac{1}{4}}\) )
⇒2tan-1(\(\frac{1}{2}\) )= tan-1(\(\frac{1}{\frac{4-1}{4}}\) )
⇒2tan-1(\(\frac{1}{2}\) )= tan-1(\(\frac{4}{3}\) )
⇒2tan-1(\(\frac{1}{2}\) )= tan-1(\(\frac{1}{\frac{4-1}{4}}\) )
⇒2tan-1(\(\frac{1}{2}\) )= tan-1(\(\frac{4}{3}\) )
∴L.H.S= 2tan-1(\(\frac{1}{2}\) )+ tan-1(\(\frac{1}{7}\) )
= tan-1(\(\frac{4}{3}\) ) + tan-1(\(\frac{1}{7}\) )
=tan-1(\(\frac{\frac{4}{3}+\frac{1}{7}}{1-\frac{4}{3}\ \times \frac{1}{7}}\) )
=tan-1(\(\frac{\frac{28+3}{3\times7}}{\frac{7\times3-4}{7\times3} }\) )
=tan-1(\(\frac{\frac{31}{21}}{\frac{17}{21} }\) )
==tan-1(\(\frac{31}{17} \) )
=R.H.S ..... Hence Proved
Write the following functions in the simplest form:
5. tan-1(\(\frac{\sqrt{1+x^2} -1}{x}\) ), x ≠ 0
Sol. Let x=tany. ⇒ y=tan-1x
∴ tan-1(\(\frac{\sqrt{1+x^2} -1}{x}\) )= tan-1(\(\frac{\sqrt{1+tan^2 y} -1}{tany}\) )= tan-1(\(\frac{\sqrt{sec^2 y} -1}{tany}\) )=tan-1(\(\frac{sec y -1}{tanyx}\) )
= tan-1(\(\frac{\frac{1}{cosy} -1}{\frac{siny}{cosy}}\) )= tan-1(\(\frac{\frac{1-cosy}{cosy}}{\frac{siny}{cosy}}\) )= tan-1(\(\frac{1-cosy}{siny}\) )= tan-1(\(\frac{2sin^2 \frac{y}{2}}{2sin \frac{y}{2}cos \frac{y}{2}}\) )= tan-1(\(\frac{sin \frac{y}{2}}{ cos \frac{y}{2}}\)) = tan-1(tan\(\frac{y}{2}\) )=\( \frac{y}{2}\)= \( \frac{1}{2}\)tan-1x
6. tan-1( \(\frac{1}{\sqrt{x^2 - 1}}\) ) , |x| > 1
Sol. Let x=cosecy.
tan-1( \(\frac{1}{\sqrt{cosec^2 y - 1}}\) )= tan-1( \(\frac{1}{\sqrt{cot^2 y}}\) )=tan-1( \(\frac{1}{coty}\) )=tan-1( tany )= y = \(\cosec^{-1} x\)
= \(\frac{\pi}{2}\)-\(\sec^{-1} x\)
7. tan-1( \(\sqrt{\frac{1-cosx}{1+cosx}}\) ), x< π
Sol. tan-1( \(\sqrt{\frac{1-cosx}{1+cosx}}\) )= tan-1( \(\sqrt{\frac{2sin^2 \frac{x}{2}}{2cos^2 \frac{x}{2}}}\) ) = tan-1( \(\sqrt{\frac{sin^2 \frac{x}{2}}{2cos^2 \frac{x}{2}}}\) ) =tan-1( \(\sqrt{tan^2 \frac{x}{2}}\) ) = tan-1( \(tan \frac{x}{2}\) ) = \( \frac{x}{2}\)
= tan-1(\(\frac{4}{3}\) ) + tan-1(\(\frac{1}{7}\) )
=tan-1(\(\frac{\frac{4}{3}+\frac{1}{7}}{1-\frac{4}{3}\ \times \frac{1}{7}}\) )
=tan-1(\(\frac{\frac{28+3}{3\times7}}{\frac{7\times3-4}{7\times3} }\) )
=tan-1(\(\frac{\frac{31}{21}}{\frac{17}{21} }\) )
==tan-1(\(\frac{31}{17} \) )
=R.H.S ..... Hence Proved
Write the following functions in the simplest form:
5. tan-1(\(\frac{\sqrt{1+x^2} -1}{x}\) ), x ≠ 0
Sol. Let x=tany. ⇒ y=tan-1x
∴ tan-1(\(\frac{\sqrt{1+x^2} -1}{x}\) )= tan-1(\(\frac{\sqrt{1+tan^2 y} -1}{tany}\) )= tan-1(\(\frac{\sqrt{sec^2 y} -1}{tany}\) )=tan-1(\(\frac{sec y -1}{tanyx}\) )
= tan-1(\(\frac{\frac{1}{cosy} -1}{\frac{siny}{cosy}}\) )= tan-1(\(\frac{\frac{1-cosy}{cosy}}{\frac{siny}{cosy}}\) )= tan-1(\(\frac{1-cosy}{siny}\) )= tan-1(\(\frac{2sin^2 \frac{y}{2}}{2sin \frac{y}{2}cos \frac{y}{2}}\) )= tan-1(\(\frac{sin \frac{y}{2}}{ cos \frac{y}{2}}\)) = tan-1(tan\(\frac{y}{2}\) )=\( \frac{y}{2}\)= \( \frac{1}{2}\)tan-1x
6. tan-1( \(\frac{1}{\sqrt{x^2 - 1}}\) ) , |x| > 1
Sol. Let x=cosecy.
tan-1( \(\frac{1}{\sqrt{cosec^2 y - 1}}\) )= tan-1( \(\frac{1}{\sqrt{cot^2 y}}\) )=tan-1( \(\frac{1}{coty}\) )=tan-1( tany )= y = \(\cosec^{-1} x\)
= \(\frac{\pi}{2}\)-\(\sec^{-1} x\)
7. tan-1( \(\sqrt{\frac{1-cosx}{1+cosx}}\) ), x< π
Sol. tan-1( \(\sqrt{\frac{1-cosx}{1+cosx}}\) )= tan-1( \(\sqrt{\frac{2sin^2 \frac{x}{2}}{2cos^2 \frac{x}{2}}}\) ) = tan-1( \(\sqrt{\frac{sin^2 \frac{x}{2}}{2cos^2 \frac{x}{2}}}\) ) =tan-1( \(\sqrt{tan^2 \frac{x}{2}}\) ) = tan-1( \(tan \frac{x}{2}\) ) = \( \frac{x}{2}\)
8.tan-1( \(\frac{cosx-sinx}{cosx+sinx}\) ), 0 <x< π
Sol. tan-1( \(\frac{cosx-sinx}{cosx+sinx}\) )= tan-1( \(\frac{cosx-sinx}{cosx+sinx}\) ) = tan-1( \(\frac{1-\frac{sinx}{cosx}}{1+\frac{sinx}{cosx}}\) ) = tan-1( \(\frac{1-tanx}{1+tanx}\) )
= tan-1( \(\frac{tan\frac{\pi}{4}-tan x}{1+tan\frac{\pi}{4}tanx}\) ) = tan-1( tan(\(\frac{\pi}{4}\)-x)) = \(\frac{\pi}{4}\)-x
9. tan-1( \(\frac{x}{\sqrt{a^2 - x^2}}\) ) , |x| < a
Sol. Let x=asiny.
= tan-1( \(\frac{tan\frac{\pi}{4}-tan x}{1+tan\frac{\pi}{4}tanx}\) ) = tan-1( tan(\(\frac{\pi}{4}\)-x)) = \(\frac{\pi}{4}\)-x
9. tan-1( \(\frac{x}{\sqrt{a^2 - x^2}}\) ) , |x| < a
Sol. Let x=asiny.
tan-1( \(\frac{x}{\sqrt{a^2 - x^2}}\) )=tan-1( \(\frac{x}{\sqrt{a^2 - asin^2 y}}\) )=tan-1( \(\frac{x}{\sqrt{a^2(1 - sin^2 y)}}\) )= tan-1( \(\frac{x}{\sqrt{a^2(cos^2 y)}}\) )= tan-1( \(\frac{asiny}{acosy}\) ) = tan-1( tany ) = y =\(\sec^{-1} \frac{x}{a}\)
10. tan-1( \(\frac{3a^2 x - x^3}{a^3 -3ax^2}\) ), 0< a ; \(\frac{-a}{\sqrt{3}} \) ≤ x ≤ \(\frac{a}{\sqrt{3}} \)
Sol. Let x=atany.
tan-1( \(\frac{3a^2 x - x^3}{a^3 -3ax^2}\) )= tan-1( \(\frac{3a^2 atany - a^3tan^3y}{a^3 -3aa^2tan^2y}\) )= tan-1( \(\frac{3a^2 atany - a^3tan^3y}{a^3 -3aa^2tan^2y}\) )
= tan-1( \(\frac{a^3(3tany - tan^3y)}{a^3(1 -3tan^2y)}\) )=tan-1( \(\frac{3tany - tan^3y}{1 -3tan^2y}\) ) = tan-1( tan 3y) = 3y= 3\(\tan^{-1} \frac{x}{a}\)
Find the values of each of the following :
11. tan-1[2cos(\(\sin^{-1} \frac{1}{2}\))]
Sol. tan \({1\over2}[sin^{-1}{2x\over 1+x^2}+cos^{-1}{1-y^{-2}\over1+y^2}]\)=tan \({1\over2}[2tan^{-1}x+2tan^{-1}y]\)
=tan \([tan^{-1}x+tan^{-1}y]\)
=\({\tan(tan^{1}x)+ tan(tan^{-1}y)\over 1-tan(tan^{-1}x)tan(tan^{-1}y) } \)
=\({ x+y\over1-xy}\)
Looking for
Exercise 2.1
tan-1( \(\frac{3a^2 x - x^3}{a^3 -3ax^2}\) )= tan-1( \(\frac{3a^2 atany - a^3tan^3y}{a^3 -3aa^2tan^2y}\) )= tan-1( \(\frac{3a^2 atany - a^3tan^3y}{a^3 -3aa^2tan^2y}\) )
= tan-1( \(\frac{a^3(3tany - tan^3y)}{a^3(1 -3tan^2y)}\) )=tan-1( \(\frac{3tany - tan^3y}{1 -3tan^2y}\) ) = tan-1( tan 3y) = 3y= 3\(\tan^{-1} \frac{x}{a}\)
Find the values of each of the following :
11. tan-1[2cos(\(\sin^{-1} \frac{1}{2}\))]
Sol. tan-1[2cos(\(\sin^{-1} \frac{1}{2}\))] =tan-1[2cos(\( \frac{\pi}{6}\))] = tan-1[2(\( \frac{1}{2}\))]
= tan-1[1]= \(\frac{\pi}{4}\) ∵\(\sin^{-1} \frac{1}{2}\)=\(\sin^{-1} sin(\frac{\pi}{6})\) =\(\frac{\pi}{6}\)
12. cot (\(\tan^{-1}a+ cot^{-1}a\))
Sol. cot (\(\tan^{-1}a+ cot^{-1}a\)) =cot (\(\pi\over2\))=0 By property 4(ii) page 43
13. tan \({1\over2}[sin^{-1}{2x\over 1+x^2}+cos^{-1}{1-y^{-2}\over1+y^2}]\), |x|< 1, y>0 and xy<1
Sol. tan \({1\over2}[sin^{-1}{2x\over 1+x^2}+cos^{-1}{1-y^{-2}\over1+y^2}]\)=tan \({1\over2}[2tan^{-1}x+2tan^{-1}y]\)
=tan \([tan^{-1}x+tan^{-1}y]\)
=\({\tan(tan^{1}x)+ tan(tan^{-1}y)\over 1-tan(tan^{-1}x)tan(tan^{-1}y) } \)
=\({ x+y\over1-xy}\)
Looking for
Exercise 2.1
Ncert Solutions for other subjects.
Subject : General English
Question Papers
Comments
Post a Comment