Skip to main content

Class 12 Question Paper Alternative English Vibyor AHSEC 2017

Alternative English  Year - 2017 Full Marks : 100 

Class 12 Ncert solutions Maths Inverse Trigonometric Functions

Inverse trigonometric function. Exercise 2.2


1. 3sin-1x=sin-1(3x - 4x3),   x∈[ -\(\frac{1}{2}\), \(\frac{1}{2}\)]

Sol. Let sin-1x=y. Then x=sin y. Now

 sin-1(3x - 4x3)
=sin-1(3siny-4sin3y) 
=sin-1(sin 3y)                               ∵(3siny-4sin3y)=sin 3y
=3y=3sin-1x. Hence proved.


2. 3cos-1x=cos-1(4x3 - 3x),   x∈[ -\(\frac{1}{2}\), 1]

Sol. Let cos-1x=y. Then x=cos y. Now

cos-1(4x3 - 3x)
=cos-1(4cos3y - 3cosy)
=cos-1(cos 3y)                            ∵4cos3y - 3cosy=cos 3y
=3y=3cos-1x. Hence proved.


3. tan-1(\(\frac{2}{11}\) )+ tan-1(\(\frac{7}{24}\) )  =tan-1(\(\frac{1}{2}\) )   

Sol. By property 5(i) in your textbook (page 44), we have

L.H.S = tan-1(\(\frac{2}{11}\) )+ tan-1(\(\frac{7}{24}\) )

= tan-1(\(\frac{\frac{2}{11}+\frac{2}{24}}{1-\frac{2}{11}\ x \frac{7}{24}}\) )

=tan-1(\(\frac{\frac{48+77}{11\times24}}{\frac{11\times24-14}{11\times24} }\) )

= tan-1(\(\frac{\frac{125}{264}}{\frac{250}{264} }\) )

=tan-1(\(\frac{125}{250} \) )

=tan-1(\(\frac{1}{2} \) )
=R.H.S  Hence proved.




4. 2tan-1(\(\frac{1}{2}\) )+ tan-1(\(\frac{1}{7}\) )  =tan-1(\(\frac{31}{17}\) )  

Sol. By property 6(iii) (page 44)  2tan-1x=tan-1(\(\frac{2x}{1-x^2}\) )

We have 2tan-1(\(\frac{1}{2}\) )= tan-1(\(\frac{2\times\frac{1}{2}}{1-\frac{1}{2^2}}\) )

2tan-1(\(\frac{1}{2}\) )= tan-1(\(\frac{1}{1-\frac{1}{4}}\) )

2tan-1(\(\frac{1}{2}\) )= tan-1(\(\frac{1}{\frac{4-1}{4}}\) )

2tan-1(\(\frac{1}{2}\) )= tan-1(\(\frac{4}{3}\) )

 ∴L.H.S= 2tan-1(\(\frac{1}{2}\) )+ tan-1(\(\frac{1}{7}\) )

= tan-1(\(\frac{4}{3}\) ) + tan-1(\(\frac{1}{7}\) )

=tan-1(\(\frac{\frac{4}{3}+\frac{1}{7}}{1-\frac{4}{3}\ \times \frac{1}{7}}\) )

=tan-1(\(\frac{\frac{28+3}{3\times7}}{\frac{7\times3-4}{7\times3} }\) )

=tan-1(\(\frac{\frac{31}{21}}{\frac{17}{21} }\) )

==tan-1(\(\frac{31}{17} \) )
=R.H.S ..... Hence Proved


Write the following functions in the simplest form: 


5. tan-1(\(\frac{\sqrt{1+x^2} -1}{x}\) ),   x ≠ 0

Sol.  Let x=tany.   ⇒ y=tan-1x

 ∴ tan-1(\(\frac{\sqrt{1+x^2} -1}{x}\) )= tan-1(\(\frac{\sqrt{1+tan^2 y} -1}{tany}\) )=  tan-1(\(\frac{\sqrt{sec^2 y} -1}{tany}\) )=tan-1(\(\frac{sec y -1}{tanyx}\) )
= tan-1(\(\frac{\frac{1}{cosy} -1}{\frac{siny}{cosy}}\) )=    tan-1(\(\frac{\frac{1-cosy}{cosy}}{\frac{siny}{cosy}}\) )=     tan-1(\(\frac{1-cosy}{siny}\) )=  tan-1(\(\frac{2sin^2 \frac{y}{2}}{2sin \frac{y}{2}cos \frac{y}{2}}\) )=  tan-1(\(\frac{sin \frac{y}{2}}{ cos \frac{y}{2}}\))  = tan-1(tan\(\frac{y}{2}\) )=\( \frac{y}{2}\)= \( \frac{1}{2}\)tan-1x
   

6. tan-1( \(\frac{1}{\sqrt{x^2  - 1}}\) ) , |x| > 1

Sol. Let x=cosecy.
tan-1( \(\frac{1}{\sqrt{cosec^2 y - 1}}\) )= tan-1( \(\frac{1}{\sqrt{cot^2 y}}\) )=tan-1( \(\frac{1}{coty}\) )=tan-1( tany )= y =  \(\cosec^{-1} x\)
\(\frac{\pi}{2}\)-\(\sec^{-1} x\)



7. tan-1( \(\sqrt{\frac{1-cosx}{1+cosx}}\) ),   x< π 

Sol.  tan-1( \(\sqrt{\frac{1-cosx}{1+cosx}}\) )= tan-1( \(\sqrt{\frac{2sin^2 \frac{x}{2}}{2cos^2 \frac{x}{2}}}\) ) = tan-1( \(\sqrt{\frac{sin^2 \frac{x}{2}}{2cos^2 \frac{x}{2}}}\) ) =tan-1( \(\sqrt{tan^2 \frac{x}{2}}\) ) = tan-1( \(tan \frac{x}{2}\) ) = \( \frac{x}{2}\)


8.tan-1( \(\frac{cosx-sinx}{cosx+sinx}\) ),  0 <x< π 

Sol.  tan-1( \(\frac{cosx-sinx}{cosx+sinx}\) )=  tan-1( \(\frac{cosx-sinx}{cosx+sinx}\) ) = tan-1( \(\frac{1-\frac{sinx}{cosx}}{1+\frac{sinx}{cosx}}\) ) = tan-1( \(\frac{1-tanx}{1+tanx}\) )
=  tan-1( \(\frac{tan\frac{\pi}{4}-tan x}{1+tan\frac{\pi}{4}tanx}\) ) =  tan-1( tan(\(\frac{\pi}{4}\)-x)) = \(\frac{\pi}{4}\)-x

9. tan-1( \(\frac{x}{\sqrt{a^2 - x^2}}\) ) , |x| < a

Sol.  Let x=asiny.
tan-1( \(\frac{x}{\sqrt{a^2 - x^2}}\) )=tan-1( \(\frac{x}{\sqrt{a^2 - asin^2 y}}\) )=tan-1( \(\frac{x}{\sqrt{a^2(1 - sin^2 y)}}\) )= tan-1( \(\frac{x}{\sqrt{a^2(cos^2 y)}}\) )= tan-1( \(\frac{asiny}{acosy}\) )  = tan-1( tany )  =  y  =\(\sec^{-1} \frac{x}{a}\)


10. tan-1( \(\frac{3a^2 x - x^3}{a^3 -3ax^2}\) ),   0< a ; \(\frac{-a}{\sqrt{3}} \) ≤ x ≤   \(\frac{a}{\sqrt{3}} \) 

Sol.  Let x=atany.
  tan-1( \(\frac{3a^2 x - x^3}{a^3 -3ax^2}\) )= tan-1( \(\frac{3a^2 atany - a^3tan^3y}{a^3 -3aa^2tan^2y}\) )= tan-1( \(\frac{3a^2 atany - a^3tan^3y}{a^3 -3aa^2tan^2y}\) )
= tan-1( \(\frac{a^3(3tany - tan^3y)}{a^3(1 -3tan^2y)}\) )=tan-1( \(\frac{3tany - tan^3y}{1 -3tan^2y}\) ) = tan-1( tan 3y) = 3y= 3\(\tan^{-1} \frac{x}{a}\)


Find the values of each of the following :

11. tan-1[2cos(\(\sin^{-1} \frac{1}{2}\))]

Sol. tan-1[2cos(\(\sin^{-1} \frac{1}{2}\))] =tan-1[2cos(\( \frac{\pi}{6}\))] = tan-1[2(\( \frac{1}{2}\))]
= tan-1[1]= \(\frac{\pi}{4}\)                      ∵\(\sin^{-1} \frac{1}{2}\)=\(\sin^{-1} sin(\frac{\pi}{6})\) =\(\frac{\pi}{6}\) 

  

12. cot  (\(\tan^{-1}a+ cot^{-1}a\))

Sol. cot  (\(\tan^{-1}a+ cot^{-1}a\)) =cot  (\(\pi\over2\))=0 By property 4(ii) page 43


13. tan  \({1\over2}[sin^{-1}{2x\over 1+x^2}+cos^{-1}{1-y^{-2}\over1+y^2}]\),  |x|< 1, y>0 and xy<1 

Sol.  tan  \({1\over2}[sin^{-1}{2x\over 1+x^2}+cos^{-1}{1-y^{-2}\over1+y^2}]\)=tan  \({1\over2}[2tan^{-1}x+2tan^{-1}y]\)

=tan  \([tan^{-1}x+tan^{-1}y]\)

=\({\tan(tan^{1}x)+ tan(tan^{-1}y)\over 1-tan(tan^{-1}x)tan(tan^{-1}y) } \)

=\({ x+y\over1-xy}\)

Looking for
Exercise 2.1

Ncert Solutions for other subjects.

Subject : General English


Question Papers

Comments

Popular posts from this blog

Class 12 Ncert Solutions English Flamingo The Memoirs of a Chota Sahib

                                                               The Memoirs of a Chota Sahib                                                                                by John Rowntree Think as you Read  Answers for other Lessons A Thing of Beauty The Roadside Stand The Last Lesson Going Places 1. Briefly describe the scene observed by the author from the veranda of his bungalow on the bank of the Brahmaputra. Ans: The author Rowntree described that from the veranda of his bungalow he had a splendid view of the river and its shipping and, beyond, the Himalayas. In the forground was Peacock Island, with ...

Class 12 Ncert Solutions for English Flamingo The Last Lesson

Class 12 Ncert Solutions for English Flamingo The Last Lesson Think as you read 1. What was Franz expected to be prepared with for school that day? Ans. Franz was expected to be prepared with participles that day as M.Hamel would question them on participles. But Franz had not learnt anything about participles. 2. What did Franz notice that was unusual about the school that day? Ans.  Franz noticed that the school was  calm and quiet like a Sunday morning. On any other day  there would be great commotion in the school caused by the opening and closing of the desks,lessons being repeated loudly in unison and rapping of the teacher's ruler on the table. 3. What had been put up in the bulletin-board? Ans.  Orders had been put up in the bulletin board to teach German  in the schools of Alsace and Lorraine by the Germans. 4. What changes did the order from Berlin cause in school that day? Ans. Because of the order that came from Berlin M.Hamel was go...

Class 12 English Ncert solutions The Roadside Stand

Class 12 English Ncert solutions The Roadside Stand                                                                                                                                       The Roadside Stand                                                                                     by Robert Frost Think it out 1. The city folk who drove through the countryside hardly paid any heed to the roadside stand or to the people who ran it. ...