Skip to main content

Class 12 Question Paper Alternative English Vibyor AHSEC 2017

Alternative English  Year - 2017 Full Marks : 100 

Class 12 Maths NCERT solutions Inverse Trigonometric Functions


  Inverse Trigonometric Functions.    
Chapter 2

                                                      Exercise 2.1

1. Find the principal value of sin-1 (-\( \frac{1}{2} \))
Sol. Let sin-1(-\( \frac{1}{2} \))=y. Then sin y =-\(\frac{1}{2}\)
Since the range of the principal value branch of sin-1 is
(-\(\frac{\pi}{2}\,\frac{\pi}{2}\)) and  sin(-\(\frac{\pi}{6}\))=-\(\frac{1}{2}\).Therefore, the principal value of sin-1 (-\( \frac{1}{2} \))is -\(\frac{\pi}{6}\)


2. Find the principal value of cos-1 (\( \frac{\sqrt3}{2} \))
Sol.  Let cos-1(\( \frac{\sqrt3}{2} \))=y. Then cos y =\(\frac{\sqrt3}{2}\)
Since the range of the principal value branch of cos-1 is (0,\(\pi\))
 and  cos(\(\frac{\pi}{6}\))=\(\frac{\sqrt3}{2}\).
Therefore, the principal value of cos-1 (\( \frac{\sqrt3}{2} \))is \(\frac{\pi}{6}\).

3. Find the principal value of cosec-1 (2).
Sol.  Let cosec-1 (2)=y. Then cosec y =2
Since the range of the principal value branch of cosec-1 is (-\(\frac{\pi}{2}\,\frac{\pi}{2}\))-{0}
 and  cosec(\(\frac{\pi}{6}\))=2.
Therefore, the principal value of cosec-1 (2 ) is \(\frac{\pi}{6}\).




4. Find the principal value of tan-1 (\(-\sqrt3)\).
Sol.  Let tan-1 (\(-\sqrt3)\)=y. Then tan y =(\(-\sqrt3)\)
Since the range of the principal value branch of tan-1 is (-\(\frac{\pi}{2}\,\frac{\pi}{2}\))
 and - tan(\(\frac{\pi}{3}\))=(\(-\sqrt3)\).
tan(\(-\frac{\pi}{3}\))=(\(-\sqrt3)\).
Therefore, the principal value of tan-1 (\(-\sqrt3)\ ) is (-\frac{\pi}{3})\).


5. Find the principal value of cos-1 (-\( \frac{1}{2} \))
Sol.  Let cos-1(-\( \frac{1}{2} \))=y. Then cos y =-\(\frac{1}{2}\)
Since the range of the principal value branch of cos-1 is (0,\(\pi\))
and - cos(\(\frac{\pi}{3}\))=-\(\frac{1}{2}\)
which implies - cos(\(\frac{\pi}{3}\))=cos(\(\pi\)-\(\frac{\pi}{3}\))=cos(\(\frac{2\pi}{3}\))

Therefore, the principal value of cos-1 (-\( \frac{1}{2} \))is \(\frac{2\pi}{3}\).


6. Find the principal value of tan-1 (-1)
Sol.  Let tan-1 (-1)=y. Then tan y =-1
Since the range of the principal value branch of tan-1 is (-\(\frac{\pi}{2}\,\frac{\pi}{2}\))
 and  -tan(\(\frac{\pi}{4}\))=-1.
tan(-\(\frac{\pi}{4}\))=-1

Therefore, the principal value of tan-1 (-1 ) is -\(\frac{\pi}{4}\).



7. Find the principal value of sec-1 (\( \frac{2}{\sqrt3} \))
Sol.  Let sec-1 (\( \frac{2}{\sqrt3} \))=y. Then sec y =\( \frac{2}{\sqrt3} \)
Since the range of the principal value branch of sec-1 is (0,\(\pi\))-{ \(\frac{\pi}{2}\)}
and  sec(\(\frac{\pi}{6}\))=\( \frac{2}{\sqrt3} \)
Therefore, the principal value of sec1 (\( \frac{2}{\sqrt3} \)) is \(\frac{\pi}{6}\).


8. Find the principal value of cot-1 (\(\sqrt3)\).

Sol.  Let cot-1 (\(\sqrt3)\)=y. Then tan y =(\(\sqrt3)\)
Since the range of the principal value branch of cot-1 is (0,\(\pi\))
 and  cot(\(\frac{\pi}{6}\))=(\(\sqrt3)\).
Therefore, the principal value of cot-1 (\(\sqrt3)\) ) is  \(\frac{\pi}{6}\).


9. Find the principal value of cos-1 (-\( \frac{1}{\sqrt2} \))
Sol. Let cos-1(-\( \frac{1}{\sqrt2} \))=y. Then cos y =-\(\frac{1}{\sqrt2}\)
Since the range of the principal value branch of cos-1 is (0,\(\pi\))
 and  -cos(\(\frac{\pi}{4}\))=-\(\frac{1}{\sqrt2}\).
-cos(\(\frac{\pi}{4}\))=cos(\(\pi\)-\(\frac{\pi}{4}\))=cos(\(\frac{3\pi}{4}\))
Therefore, the principal value of cos-1 (-\( \frac{1}{\sqrt2} \))is \(\frac{3\pi}{4}\).



10. Find the principal value of cosec-1 (\(-\sqrt2)\).
Sol.  Let tcosec-1 (\(-\sqrt2)\). Then cosec y =(\(-\sqrt2)\)
Since the range of the principal value branch of cosec-1 is (-\(\frac{\pi}{2}\,\frac{\pi}{2}\))-{0}
 and  -cosec(\(\frac{\pi}{4}\))=(\(-\sqrt2)\).
 cosec(-\(\frac{\pi}{4}\))=(\(-\sqrt2)\).
Therefore, the principal value of cosec-1 (\(-\sqrt2)\)  is \(-\frac{\pi}{4}\).



Find the values of the following :

11. tan-1(1) + cos-1(\(-\frac{1}{2})\)+ sin-1 (-\( \frac{1}{2} \))

Sol.  We have to find the principal value of each function as before and add them.
  Let tan-1 (1)=y.Thus, tan y =1=tan \(\frac{\pi}{4}\).
Hence the principal value of tan-1 (1)=\(\frac{\pi}{4}\).
Let  cos-1(\(-\frac{1}{2})\)=y. Thus, cos y =\(-\frac{1}{2}\).
-cos(\(\frac{\pi}{3})\)= \(-\frac{1}{2}\)
But the range of the principal value branch of cos-1 is (0,\(\pi\)).
Hence -cos(\(\frac{\pi}{3})\)= cos(\(\pi\)-\(\frac{\pi}{3})\)=\(-\frac{1}{2}\)
cos(\(\frac{2\pi}{3})\)=\(-\frac{1}{2}\).
Therefore, the principal value of cos-1(\(-\frac{1}{2})\) is \(\frac{2\pi}{3}\)

Let sin-1 (-\( \frac{1}{2} \)) = y. Thus,  sin y =(-\( \frac{1}{2} \)).
-sin(\(\frac{\pi}{6}\))=(-\( \frac{1}{2} \)).
sin(\(-\frac{\pi}{6}\))=(-\( \frac{1}{2} \)).
Therefore, the principal value of sin-1 (-\( \frac{1}{2} \)) = \(-\frac{\pi}{6}\)
Therefore, 
tan-1(1) + cos-1(\(-\frac{1}{2})\)+ sin-1 (-\( \frac{1}{2} \))
\(\frac{\pi}{4}\)  +\(\frac{2\pi}{3}\)  -\(\frac{\pi}{6}\)
 =\(\frac{3\pi+8\pi-2\pi}{12}\)
=\(\frac{9\pi}{12}\)
=\(\frac{3\pi}{4}\)



12. cos-1(\(\frac{1}{2})\)+ 2sin-1 (\( \frac{1}{2} \))

Sol.  Let  cos-1(\(\frac{1}{2})\)=y. Thus, cos y =\(\frac{1}{2}\).
cos(\(\frac{\pi}{3})\)= \(\frac{1}{2}\)
The range of the principal value branch of cos-1 is (0,\(\pi\)).
Hence,  cos(\(\frac{\pi}{3})\)=\(\frac{1}{2}\)

Therefore, the principal value of cos-1(\(-\frac{1}{2})\) is \(\frac{\pi}{3}\)

Let sin-1 (\( \frac{1}{2} \)) = y. Thus,  sin y =(\( \frac{1}{2} \)).
sin(\(\frac{\pi}{6}\))=(\( \frac{1}{2} \)).
sin(\(-\frac{\pi}{6}\))=(\( \frac{1}{2} \)).
Therefore, the principal value of sin-1 (\( \frac{1}{2} \)) = \(\frac{\pi}{6}\)
Therefore, 
 cos-1(\(\frac{1}{2})\)+ 2sin-1 (\( \frac{1}{2} \))
\(\frac{\pi}{3}\)  +\(\frac{2\pi}{6}\)
\(\frac{\pi}{3}\)  +\(\frac{\pi}{3}\)
=\(\frac{2\pi}{3}\)



13. If sin-1 x=y, then
(a) 0≤ y ≤π         (b)-\(\frac{\pi}{2}\)≤ y ≤\(\frac{\pi}{2}\)        (c)0< y <π        (d)-\(\frac{\pi}{2}\)< y <\(\frac{\pi}{2}\)


Sol.   We have been given that sin-1 x=y.Since, the range of principal value branch of  sin-1 is (-\(\frac{\pi}{2}\,\frac{\pi}{2}\)). The correct answer is  (b) -\(\frac{\pi}{2}\)≤ y ≤\(\frac{\pi}{2}\)  .



13.  tan-1 (\(-\sqrt3)\) - sec-1 (-2) is equal to

(a) π         (b)-\(\frac{\pi}{3}\)        (c)\(\frac{\pi}{3}\)        (d)\(\frac{2\pi}{3}\)

Sol.  Let tan-1 (\(-\sqrt3)\)=y. Then tan y =(\(-\sqrt3)\)
Since the range of the principal value branch of tan-1 is (-\(\frac{\pi}{2}\,\frac{\pi}{2}\))
 and - tan(\(\frac{\pi}{3}\))=(\(-\sqrt3)\).
tan(\(-\frac{\pi}{3}\))=(\(-\sqrt3)\).
∴ The principal value of tan-1 (\(-\sqrt3)\) is \(\frac{\pi}{3}\)     

 Let sec-1 (-2)=y. Then,  sec y =-2
Since the range of the principal value branch of is (0,\(\pi\))-{ \(\frac{\pi}{2}\)}
 and -sec  \(\frac{\pi}{3}\)=-2
⇒ sec(π-  \(\frac{\pi}{3}\))=-2
⇒ sec( \(\frac{2\pi}{3}\))=-2
∴The principal value of sec-1 (-2)= \(\frac{2\pi}{3}\)

Hence,
tan-1 (\(-\sqrt3)\) - sec-1 (-2)
=\(\frac{\pi}{3}\) - \(\frac{2\pi}{3}\)
=-\(\frac{\pi}{3}\)    
The correct answer is (b)

Ncert Solutions for other subjects.

Subject : General English


Question Papers

Comments

Popular posts from this blog

Class 12 Ncert Solutions English Flamingo The Memoirs of a Chota Sahib

                                                               The Memoirs of a Chota Sahib                                                                                by John Rowntree Think as you Read  Answers for other Lessons A Thing of Beauty The Roadside Stand The Last Lesson Going Places 1. Briefly describe the scene observed by the author from the veranda of his bungalow on the bank of the Brahmaputra. Ans: The author Rowntree described that from the veranda of his bungalow he had a splendid view of the river and its shipping and, beyond, the Himalayas. In the forground was Peacock Island, with ...

Class 12 Ncert Solutions for English Flamingo The Last Lesson

Class 12 Ncert Solutions for English Flamingo The Last Lesson Think as you read 1. What was Franz expected to be prepared with for school that day? Ans. Franz was expected to be prepared with participles that day as M.Hamel would question them on participles. But Franz had not learnt anything about participles. 2. What did Franz notice that was unusual about the school that day? Ans.  Franz noticed that the school was  calm and quiet like a Sunday morning. On any other day  there would be great commotion in the school caused by the opening and closing of the desks,lessons being repeated loudly in unison and rapping of the teacher's ruler on the table. 3. What had been put up in the bulletin-board? Ans.  Orders had been put up in the bulletin board to teach German  in the schools of Alsace and Lorraine by the Germans. 4. What changes did the order from Berlin cause in school that day? Ans. Because of the order that came from Berlin M.Hamel was go...

Class 12 English Ncert solutions The Roadside Stand

Class 12 English Ncert solutions The Roadside Stand                                                                                                                                       The Roadside Stand                                                                                     by Robert Frost Think it out 1. The city folk who drove through the countryside hardly paid any heed to the roadside stand or to the people who ran it. ...