Skip to main content

Class 12 Question Paper Alternative English Vibyor AHSEC 2017

Alternative English  Year - 2017 Full Marks : 100 

Class 12 Ncert Solution Maths Differential Equations

Class 12 Ncert Solution Maths Differential Equations

Previous Exercises
Exercise 9.1 &9.2
Next Exercises
Exercise 9.5
Exercise 9.6

                                                                           Exercise 9.4

For each of the differential equations in Exercises 1 to 10, find the general solution:

1.\(\frac{dy}{dx}=\frac{1-\cos x}{1+ \cos x}\)

Sol: We have
\begin{aligned}
\frac{dy}{dx}&=\frac{1-\cos x}{1+ \cos x}\\
&= \frac{\sin^2{x\over2} + \cos^2{x\over2} - \cos^2{x\over2} + \sin^2{x\over2}}{\sin^2{x\over2} + \cos^2{x\over2} +\cos^2{x\over2} - \sin^2{x\over2}}\\

&= \frac{\sin^2{x\over2}+ \sin^2{x\over2}}{ \cos^2{x\over2} +\cos^2{x\over2}}\\


&= \frac{2\sin^2{x\over2}}{ 2\cos^2{x\over2}}\\

&= \tan^2{x\over2}\\

\frac{dy}{dx}&= (\sec^2{x\over2}-1)\\
\end{aligned}

Separating the variables of the above eqaution we get
$$dy=(\sec^2{x\over2}-1)dx$$

Now, integrating both sides of the above equation, we get
\begin{aligned}
\int dy&= \int(\sec^2{x\over2}-1)dx\\
y&= \frac{\tan^2{x\over2}}{1\over2} - x + C\\
y &= 2\tan^2{x\over2} -x + C
\end{aligned}
which is the general solution of the given differential equation


2.  \(\frac{dy}{dx}=\sqrt{4-y^2}\)

Sol: We have
$$\frac{dy}{dx}=\sqrt{4-y^2}$$
Separating the variables of the above equation we get
$$\frac{dy}{\sqrt{4-y^2}} = dx$$

Integrating both sides of the equation, we get

\begin{aligned}
\int \frac{dy}{\sqrt{4-y^2}} &= \int dx\\
\int \frac{dy}{\sqrt{2^2-y^2}}& = \int dx\\
\sin^{-1}\frac{y}{a}&= x+ C\\
\frac{y}{a} &= sin(x+C)\\
y&=a\sin(x+C)\\
\end{aligned}

which is the general solution of the given differential equation.

3. \(\frac{dy}{dx} + y = 1(y\neq1)\)

Sol: We have
\begin{aligned}
\frac{dy}{dx} + y &= 1(y\neq1) \\
\frac{dy}{dx} &=1-y\\
-\frac{dy}{y-1}&=x\\
\end{aligned}

Separating the variables in the above equation, we get
$$-\frac{dy}{y-1}=x $$

Integrating both sides of the equation we get
\begin{aligned}
\int \frac{dy}{y-1}&=-\int x\\
log|y-1| &=-x + C\\
y-1 &=e^{-x+ C}\\

y&=1+e^{-x}.e^C\\
y&=1+Ae^{-x}\\
\end{aligned}

4. \(\sec^2 x\tan y\ dx + \sec^2 y \tan x\ dy = 0\)

Sol: We have
$$ \sec^2 x\tan y\ dx + \sec^2 y \tan x\ dy = 0$$
Separating the variables of the above equation we get
$$ \frac{\sec^2x}{\tan x}\ dx + \frac{\sec^2y}{\tan y}\ dy = 0$$
Integrating both sides of the equation we get
\begin{aligned}
\int \frac{\sec^2x}{\tan x}\ dx + \int \frac{\sec^2y}{\tan y}\ dy = \int0\\
\int \frac{d(\tan x)}{\tan x}\ dx + \int \frac{d(\tan y)}{\tan y}\ dy = \int0\\
log|\tan x| + log|\tan y| = \log C\\
log|\tan x\tan y| = \log C\\
\tan x\tan y = C\\
\end{aligned}
which is the general solution of the given differential equation


5.\((e^x + e^{-x})dy - (e^x - e^{-x})dx = 0\)

Sol: We have
$$ (e^x + e^{-x})dy - (e^x - e^{-x})dx = 0 $$
Separating the variables of the above equation we get
$$ dy = \frac{e^x + e^{-x}}{e^x - e^{-x}}dx$$

Integrating both sides of the above equation, we get
\begin{aligned}
\int dy = \int\frac{e^x + e^{-x}}{e^x - e^{-x}}dx\\
\int dy = \int\frac{d(e^x - e^{-x})}{e^x - e^{-x}}dx\\
y = \log |e^x - e^{-x}| + C
\end{aligned}
which is the general solution of the given differential equation.

6. \(\frac{dy}{dx}=(1+ x^2)(1+ y^2)\)

Sol: We have $$ \frac{dy}{dx}=(1+ x^2)(1+ y^2)$$
Separating the variables of the above equation we get
$$\frac{dy}{1+ y^2} = (1+ x^2)dx$$
Integrating both sides of the above equation we get
\begin{aligned}
\int \frac{dy}{1+ y^2} = \int (1+ x^2)dx\\
\int \frac{dy}{1+ y^2} = \int dx+ \int x^2dx\\
\tan^{-1}y = x+ \frac{x^3}{3} + C
\end{aligned}
 which is the general solution of the given differential equation


7. \(y \log y\ dx - x\ dy =0\)

Sol:  We have $$ y \log y\ dx - x\ dy =0$$
Separating the variables of the above equation we get
$$ \frac{dy}{y\log y} =\frac{dx}{x}$$
Integrating both sides of the above equation,we get
\begin{aligned}
\int \frac{dy}{y\log y} &=\int \frac{dx}{x}\\
\int \frac{d(\log y)}{\log y} &=\int \frac{dx}{x}\\
\log |\log y| &= \log x + \log C\\
\log |\log y| &= \log xC\\
\log y &=xC\\
y &= e^{xC}\\
\end{aligned}
which is the genral solution of the given differential equation


8. \(x^5\frac{dy}{dx} = - y^5\)

Sol: We have $$ x^5\frac{dy}{dx} = - y^5 $$
Separating the variables of the above equation we get
$$\frac{dy}{y^5} + \frac{dx}{x^5}=0$$
Integrating both sides of the above equation we get
\begin{align}
\int \frac{dy}{y^5} + \int \frac{dx}{x^5} = A\\
\\
\frac{y^{-5+1}}{-5+1} + \frac{x^{-5+1}}{-5+1}= A\\
\\
\frac{y^{-4}}{-4} + \frac{y^-4}{-4} =A\\
y^{-4} + x^{-4} = -4A\\
y^{-4} + x^{-4} = C\\

\end{align}
which is the required general solution of the given differential equation


9. \(\frac{dy}{dx} = \sin^{-1} x\)

Sol: We have $$ \frac{dy}{dx} = \sin^{-1} x$$
Separating the variables in the above equation we have
 $$ dy = \sin^{-1} x\ dx$$
Integrating both sides of the above equation we get
\begin{aligned}
\int dy &= \int \sin^{-1} x\ dx\\
y &= \sin^{-1}x\int 1dx -\int \frac{1}{\sqrt{1-x^2}}\ dx\ (\text{Integrating by parts})\\
y&= x\sin^{-1} x + \int\frac{-2x}{2\sqrt{1-x^2}}\ dx\\
y&=  x\sin^{-1} x  + \int d(\sqrt{1-x^2})\\
y&= x\sin^{-1} x + \sqrt{1-x^2} + C
\end{aligned}
which is the general solution of the given differential equation.

10 \(e^x \tan y \ dx + (1- e^x) \sec^2y\ dy =0\)

Sol: We have  $$e^x \tan y \ dx + (1- e^x) \sec^2y\ dy =0$$
Separating the variables, the above equation can be written as
$$\left(\frac{e^x}{1-e^x}\right)dx + \left(\frac{\sec^2y}{\tan y}\right)dy=0 $$
Integrating both sides of the above equation we get
\begin{aligned}
\int \left(\frac{e^x}{1-e^x}\right)dx +\int \left(\frac{\sec^2y}{\tan y}\right)dy&=\int 0\\
\int- \left(\frac{-e^x}{1-e^x}\right)dx +\int \left(\frac{\sec^2y}{\tan y}\right)dy&=\int 0\\
\int \left(\frac{d(1-e^x)}{1-e^x}\right)dx +\int \left(\frac{d(\tan y)}{\tan y}\right)dy&=\int 0\\
-log|1-e^x| + log|\tan y| &= \log C\\
\log\left(\frac{\tan y}{1-e^x}\right) &= \log C\\
\tan y &= C(1-e^x)\\
\end{aligned}
which is the general solution of the given differential equation.

For each of the following of the differential equations in Exercises 11 to 14, find a particular solution satisfying the given condition:

11. \(x^3 + x^2 + x + 1)\frac{dy}{dx} = 2x^2 + x: y =1\) when x =0


Sol: We have $$ (x^3 + x^2 + x+ 1)\frac{dy}{dx} = 2x^2 + x$$
Separating the variables the above equation can be written as
$$ dy = \frac{2x^2 + x}{x^3 + x^2 + x+ 1}\ dx$$
Integrating both sides of the equation we get
\begin{align}
 \int dy & = \int \frac{2x^2 + x}{x^3 + x^2 + x+ 1}\ dx\\
y&=\int \frac{2x^2 + x}{(x^2 +1)( x+ 1)}\ dx\tag 1\\
\\
Let\  \frac{2x^2 + x}{(x^2 +1)( x+ 1)} &=\frac{A}{x+1} + \frac{Bx+C}{x^2+1}\\
\frac{2x^2 + x}{(x^2 +1)( x+ 1)}&= \frac{A(x^2+1) +(Bx+C)(x+1)}{(x+1)(x^2+1)}\\
2x^2 + x&=A(x^2+1) +(Bx+C)(x+1)\\
2x^2 + x&=Ax^2 +Bx^2+ Bx + Cx + A+C\\
\\
\text{Equating the coefficients of corresponding terms we get}\\
A+B = 2\\
B+C = 1\\
A+C = 0\\
\text{Solving the above three equations we get}\\
A=\frac{1}{2},\  \  B=\frac{3}{2},\  \   C=\frac{-1}{2}\\
\text{Substituting these values in eq(1) we get}\\
y=\int \frac{1}{2(x+1)}\ dx + \int \frac{3x-1}{2(x^2+1)}\ dx\\
y=\int \frac{1}{2(x+1)}\ dx + \int \frac{3x}{2(x^2+1)}\ dx -\int \frac{1}{2(x^2+1)}\ dx\\
y=\int \frac{1}{2(x+1)}\ dx + \frac{3}{4}\int \frac{2x}{(x^2+1)}\ dx -\frac{1}{2}\int\frac{1}{(x^2+1)}\ dx\\
y= \frac{1}{2}log|x+1| + \frac{3}{4}log|x^2+1| -\frac{1}{2}\tan^{-1}x+C \tag 1\\

\end{align}

Given that y=1 when x=0. Substituting these values in above equation we get
\begin{align}
1&= \frac{1}{2}log|0+1| + \frac{3}{4}log|0^2+1| -\frac{1}{2}\tan^{-1}0+C\\
C&=1
\end{align}
Substituting the value of C in eq (1) we get
\begin{align}
y&=\frac{1}{2}log|x+1| + \frac{3}{4}log|x^2+1| -\frac{1}{2}\tan^{-1}x+1\\
y&=\frac{1}{4}log|x+1|^2+ \frac{1}{4}log|x^2+1|^3 -\frac{1}{2}\tan^{-1}x+1\\
y&=\frac{1}{4}\log\left[(x+1)^2(x^2+1)^3\right]-\frac{1}{2}\tan^{-1}x+1\\
\end{align}

12. \(x(x^2 - 1)\frac{dy}{dx} =1: y=0\) when x =2

Sol:  We have
$$ x(x^2-1)\frac{dy}{dx} =1 $$
Separating the variables the above equation can be written as
$$dy = \frac{dx}{x(x+1)(x-1)}$$
Integrating both sides of the above equation, we get
\begin{align}
\int dy &= \int \frac{dx}{x(x+1)(x-1)}\\
\int dy &=\int \left(\frac{-1}{x} + \frac{1}{2(x+1)} + \frac{1}{2(x-1)}\ dx\right)\\
y&= -\log x +\frac{1}{2}\log+1) + \frac{1}{2}\log-1) + \log k\\
y&=\frac{1}{2}\log\left[\frac{k^2(x+1)(x-1)}{x^2}\right]\tag 1\\
\end{align}
Given that y=0 when x=2. Substituting these values in eq (1) we get
\begin{align}
0&=\frac{1}{2}\log\left[\frac{k^2(2+1)(2-1)}{2^2}\right]\\\
\frac{3k^2}{4}&= e^0\\
k^2 &=\frac{4}{3}\\
\end{align}
Substituting this value of k in eq (1) we get
\begin{align}
y&=\frac{1}{2}\log\left[\frac{4(x+1)(x-1)}{3x^2}\right]
\end{align}

Class 12 Ncert Solution Maths Differential Equations

13. \(\cos\left(\frac{dy}{dx}\right)=a(a\in R)\);y =1 when x =0

Sol: We have
$$\cos\left(\frac{dy}{dx}\right)=a$$
Separating variables the above equation can be written as
\begin{align}
\frac{dy}{dx}&=\cos^{-1}a\\
dy&=\cos^{-1}a\ dx \tag 1\\
\end{align}
Integrating both sides of eq (1) we get
\begin{align}
\int dy&=\int \cos^{-1}a\ dx
y &= x\cos^{-1}a + C\tag 2\\
\end{align}
Given that y=1 when x = 0. Putting these values in eq (2) we get
\begin{align}
1 &= 0\times\cos^{-1}a + C\\
C&=1\\
\end{align}
Substituting the value of C in eq (2) we get
\begin{align}
y &= x\cos^{-1}a + 1\\
y-1&=x\cos^{-1}a\\
\frac{y-1}{x} &= \cos^{-1}a\\
\cos \frac{y-1}{x} &= a\\
\end{align}

14. \(\frac{dy}{dx} =y\tan x\) ;y=1 when x =0

Sol: We have $$ \frac{dy}{dx} =y\tan x$$
Separating the variables the baove equation can be written as
$$ \frac{dy}{y}=\tan x\ dx $$
Integrating both sides of the above equation we get
\begin{align}
\int \frac{dy}{y} &= \int \tan x \ dx\\
\log y&=\log (\sec x) + log C\\
\log y &=\log (C\sec x)\\
y&= C\sec x\tag 1\\
\end{align}
Given that y =1 when x =0. Substituting these values in eq(1) we get
\begin{align}
1&=C\sec 0\\
C&=1\\
\end{align}
Substituting this value of C in (1) we get
$$y=\sec x$$

15. Find the equation of a curve passing through the point (0,0) and whose differential equation is \(y^{'}=e^x\sin x\).

Sol: The given differential equation is
$$ y^{'}=e^x\sin x $$
$$\frac{dy}{dx} = e^x\sin x$$
$$dy= e^x\sin x dx$$

Integrating both sides of the equation, we get
\begin{align}
\int dy &= \int e^x\sin x dx\\
y&= \sin x\ e^x - \int  e^x \cos x\ dx \ (\text{Integration by parts})\\
y&= \sin x \ e^x - \left[\cos x e^x -\int(-\sin x) e^x\ dx\right]\\
y&= \sin x \ e^x - \left[\cos x e^x +\int(\sin x) e^x\ dx\right]\\
y&= \sin x \ e^x - \cos x e^x -\int(\sin x) e^x\ dx\\
y&= e^x(\sin x  - \cos x) - y\\
y+y&=  e^x(\sin x  - \cos x) \\
2y&= e^x(\sin x  - \cos x) \\
y&= \frac{1}{2}e^x(\sin x  - \cos x)  + C\tag 1\\
\end{align}
Substituting x=0 and y=0 in the above equation we get
\begin{aligned}
0 = \frac{1}{2}e^0(\sin 0 - \cos 0) + C\\
0 = \frac{1}{2}1(- 1) + C\\
C = -\frac{1}{2}\\
\end{aligned}
Substituting the value of C in equation(1) we get
\begin{align}
y &=  \frac{1}{2}e^x(\sin x  - \cos x)  + \frac{1}{2}\\
2y&= \frac{1}{2}e^x(\sin x  - \cos x)  + 1\\
2y-1&= \frac{1}{2}e^x(\sin x  - \cos x)  \\
\end{align}
 which is the required equation of a curve passing throught the point (0,0).

16. For the differential equation \(xy\frac{dy}{dx}= (x+2)(y+2)\), find the solution curve passing through the point (1,-1).

Sol: We have $$ xy\frac{dy}{dx}= (x+2)(y+2) $$
Separating the variables the above equation can be written as
$$ \frac{ydy}{y+2}=\frac{x+2}{x}\ dx$$
Integrating both sides of the above equation, we get
\begin{align}
\int \frac{ydy}{y+2}=\int \frac{x+2}{x}\ dx\\
\int \frac{y+2-2}{y+2}\ dy &=\int \frac{x+2}{x}dx\\
\int1.dy -2 \frac{1}{y+2}\ dy &=\int dx+ 2 \frac{1}{x}\ dx\\
y - 2\log|y+2| &= x + 2 \log x + C\tag 1\\
\end{align}
The curve passes through the point (1, -1). Substituting  x =1 and y = -1 in eq (1) we get
\begin{align}
-1 - 2\log|-1+2| &= 1 + 2\log 1 + C\\
C&= -2\   \text{since log 1 =0}\\
\end{align}
Substituting the value of C in eq (1) we get
\begin{align}
y - 2\log|y+2| &= x + 2 \log x + -2\\
y-x+2 &= log(y+2)^2 + log x^2\\
y+x-2 &= log (x^2(y+2)^2)\\
\end{align}
which is the required equation of the curve passing through the point (1, -1)

17. Find the equation of a curve passing through the point (0,-2) given that at any point (x,y) on the curve, the product of the slope of its tangent and y coordinate of the point is equal to the x coordinate of the point.

Sol: Slope of a tangent is = \(\frac{dy}{dx}\)
Given that \(y\frac{dy}{dx}=x\)
Separating the variables the above equation can be written as
$$ y\ dy= x\ dx$$
Integrating both sides of the equation we get
\begin{align}
\int y\ dy &= \int x dx\\
\frac{y^2}{2} &= \frac{x^2}{2} + C \tag 1\\
\end{align}
 Given that the curve passes throught the point(0, -2)
Substituting x = 0 and y =-2 in eq (1)  we get
\begin{align}
\frac{(-2)^2}{2} &= \frac{0^2}{2} + C\\
\frac{4}{2} &= C\\
C &= 2\\
\end{align}
 Substituting the value of C in eq (1) we get
\begin{align}
\frac{y^2}{2} &= \frac{x^2}{2} + C\\
\frac{y^2}{2} &= \frac{x^2}{2} + 2\\
\frac{y^2}{2}& = \frac{x^2 +4}{2}\\
y^2 = x^2 + 4\\
y^2 - x^2 =4\\
\end{align}
which is the required equation of the curve passing through  the point (0,-2)

18. At any point (x,y) of a curve, the slope of the tangent is twice the slope of the line segment joining the point of contact to the point (-4,-3). Find the equation of the curve given that it passes through (-2,1).

Sol:  The slope of the line passing through the point (x,y) and (-4,-3) is = \(\frac{y+3}{x+4}\)
We know slope of the tangent =\(\frac{dy}{dx}\)
Given that
\begin{align}
\frac{dy}{dx} = 2\frac{y+3}{x+4}\\
\frac{dy}{y+4} = 2(x+3)dx\\
\end{align}
Integrating both sides of the equation
\begin{align}
\int \frac{dy}{y+3} &= \int frac{2}{x+4}dx \\
\log |y+3| &= 2\log|x+4| + \log C\\
\log |y+3| &= \log C(x+4)^2\\
y+3&=C(x+4)^2\\tag 1\
\end{align}
The Curve passes through the point (-2,1), Substituting x=-1 and y=1 in eq(1) we get
\begin{align}
1+3&=C(-2+4)^2
4&= C\times 4
C&=1
\end{align}
Substituting C=1 in eq (1) we get
$$ y+3 = (x+4)^2 $$
Which is the general solution of the given differential equation.

19.  The volume of spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of balloon after t seconds.

Sol: Let r be the radius of the spherical baloon and V be the volume.
Therefore, $$\frac{dV}{dt} = C$$
$$dV =Cdt$$
Integrating both sides we get
\begin{align}
\int dV &= \int Cdt\\
V&= Ct + A, \text{where A is a constant}\\
\frac{4\pi r^3}{3}&=Ct + A \tag 1\\

\end{align}
 Given that at t =0 , r =3
putting these values in eq (1) we get
\begin{align}
\frac{4\pi 3^3}{3}&=C\times0 + A\\
A&=36\pi \\
\end{align}
equation (1) now becomes
\begin{align}
\frac{4\pi r^3}{3}&=Ct + 36\pi\tag 2
\end{align}

When t = 3 sec , r= 6. Putting these values in eq (2) we get
\begin{align}
\frac{4\pi 6^3}{3}&=C\times 3+ 36\pi\\
288\pi&= 3C + 36\pi\\
C&= 84\pi\\
\end{align}
Thus, eq(2) becomes
\begin{align}
\frac{4\pi r^3}{3}&=84\pi t + 36\pi\\
4\pi r^3 &= 3\times 4\pi(21t + 9)\\
r^3&=62t + 27\\
r&= (62t+ 27)^\frac{1}{3}\\
\end{align}
This is the required  radius of the spherical baloon after t seconds

20.In a bank, principal increases continuously at the rate of r% per year. Find the value of r if Rs 100 double itself in 10 years(log 2 = 0.6391)

Sol: Let p be the principal so given that
\begin{align}
\frac{dp}{dt} &= r%\times p \\
\frac{dp}{dt} &= \frac{r}{100}p\\
\frac{dp}{p}  &= \frac{r}{100}dt\\
\end{align}
Integrating both sides of the equation we get
\begin{align}
\int \frac{dp}{p} = \int \frac{r}{100} \ dt \\
log|p|&=\frac{rt}{100} + \log C\\
\log p - \log C= \frac{rt}{100} \\
log|\frac{p}{C}| =\frac{rt}{100}\\
p=Ce^{\frac{rt}{100}}\tag 1\\
\end{align}
When t=0, p = 100. Substituting these values in eq (1) we get
\begin{align}
100 &= Ce^{0} \\
C&=100\\
\end{align}
putting this value of C in eq (1) we get
\begin{align}
p=100e^{\frac{rt}{100}}\tag 2\\
\end{align}

When t=10, p= 200. Substituting these values in eq (2) we get
\begin{align}
200&=100e^{\frac{r\times10}{100}}\\
2&= e^{\frac{r}{10}}\\
log 2&=\frac{r}{10}\\
r&=10\log 2\\
r&=10 \times0.6931\\
r&= 6.931\\
\end{align}
 Thus the value of r is 6.93%


Class 12 Ncert Solution Maths Differential Equations

21. In a bank, principal increases continuously at the rate of 5% per year. An amount of Rs 1000 is deposited with theis bank, how much will it worth after 10 years(\(e^{0.5} =1.648)\).

Sol: Let p be the principal. Given that
\begin{align}

\frac{dp}{dt} &= \frac{5}{100}p\\
\frac{dp}{dt} &= \frac{p}{20}\\
\frac{dp}{p} &=\frac{dt}{20}\\
\end{align}
Integrating both sides of the equation we get
\begin{align}
log|p| &= \frac{t}{20} + \log C \\
\log|p| -\log  C &= \frac{t}{20}\\
\log \frac{p}{C} &= \frac{t}{20}\\
p&=Ce^{\frac{t}{20}}\tag 1\\
\end{align}
when t = 0, p= 1000. Substituting these value in the above equation we get
\begin{align}
1000&=Ce^{\frac{0}{20}}\\
C=1000\\
\end{align}
Putting this value of C in eq(1) we get

\begin{align}
p&=1000e^{\frac{t}{20}}\tag2\\
\end{align}
When t =10 eq(2) becomes
\begin{align}
p&= 1000e^{\frac{5}{20}}\\
p&= 1000e^{\frac{1}{4}}\\
p&=1000 e^{0.5}\\
p&= 1000 \times 1.648\\
p&= 1648\\
\end{align}
Thus, after 10 years the deposited amount will become Rs 1648.

22. In a culture, the bacteria count is 1,00,000. The number is increased by 10 % in 2 hours. In how many hours will the count reach 2,00,000, if the rate of growth of bacteria is proportional to the number present?

Sol: Let the number of bacteria at any time t be n.
Thus given that
\begin{align}
 \frac{dn}{dt} \alpha\  n\\
\frac{dn}{dt} &= kn\\
\frac{dn}{n}&=kdt\\
\end{align}
Integrating the aboce equation we get
\begin{align}
log|n| &=kt + C \tag 1\\
\end{align}
When t=0, n=100000. Substituting these values in eq (1) we get
\begin{align}
\log 100000 &= k\times 0 + C\\
C &= \log100000\\

\end{align}
Putting this value of C in eq (1) we get
\begin{align}
log|n| &=kt + \log 100000\tag 2\\
\end{align}
 The number increases by 10 % in 2 hours
So t = 2 and n = 100000 + 10% of 100000
therefore, n = 110000
Substituting these values in eq(2) we get
\begin{align}
\log110000 &=2k + \log100000\\
\log110000-\log 100000 &= 2k\\
\log \left(\frac{110000}{100000}\right)& = 2k\\
k&= \frac{1}{2}\log\left(\frac{11}{10}\right)\\
\end{align}
Substituting this value of k in eq (2), we get
\begin{align}
log|n| &=\frac{1}{2}\log\left(\frac{11}{10}\right)t + \log 100000\\
\end{align}
Now when n =200000 eq (3) becomes
\begin{align}
\log 200000 &= \frac{1}{2}\log\left(\frac{11}{10}\right)t - \log 100000\\
\log 200000 - \log 100000 &=\frac{1}{2}\log\left(\frac{11}{10}\right)t\\
\log\left(\frac{200000}{100000}\right)&= \frac{1}{2}\log\left(\frac{11}{10}\right)t\\
\log 2 &= \frac{1}{2}\log\left(\frac{11}{10}\right)t\\
t &=\frac{log2}{ \frac{1}{2}\log\left(\frac{11}{10}\right)}\\
t&=\frac{2log2}{ \log\left(\frac{11}{10}\right)}\\
\end{align}

23. The general solution of the differential equation\(\frac{dy}{dx}=e^{x+y}\) is

(A) \(e^x + e^{-y} = C\)                                   (B) \(e^x + e^{y} = C\)
(C) \(e^{-x} + e^{y} = C\)                               (D) \(e^{-x} + e^{-y} = C\) 

Sol: The given differential equation can be written as
$$ \frac{dy}{e^y} =e^x\ dx$$
Integrating both sides we get
\begin{align}
\int \frac{dy}{e^y} &=\int e^x\ dx\\
\int e^{-y} &=\int e^x\ dx\\
-e^{-y} + C&=e^x \\
e^x +e^{-y}&=C\\
\end{align}
So the correct answer is option (A).

                                           Class 12 Ncert Solution Maths Differential Equations

Previous Exercises
Exercise 9.1 &9.2
Next Exercises
Exercise 9.5
Exercise 9.6

Other Chapters
Chapter 3 Matrices
Ncert Solutions for other subjects.

Subject : General English


Question Papers

Comments

Popular posts from this blog

Class 12 Ncert Solutions English Flamingo The Memoirs of a Chota Sahib

                                                               The Memoirs of a Chota Sahib                                                                                by John Rowntree Think as you Read  Answers for other Lessons A Thing of Beauty The Roadside Stand The Last Lesson Going Places 1. Briefly describe the scene observed by the author from the veranda of his bungalow on the bank of the Brahmaputra. Ans: The author Rowntree described that from the veranda of his bungalow he had a splendid view of the river and its shipping and, beyond, the Himalayas. In the forground was Peacock Island, with ...

Class 12 Ncert Solutions for English Flamingo The Last Lesson

Class 12 Ncert Solutions for English Flamingo The Last Lesson Think as you read 1. What was Franz expected to be prepared with for school that day? Ans. Franz was expected to be prepared with participles that day as M.Hamel would question them on participles. But Franz had not learnt anything about participles. 2. What did Franz notice that was unusual about the school that day? Ans.  Franz noticed that the school was  calm and quiet like a Sunday morning. On any other day  there would be great commotion in the school caused by the opening and closing of the desks,lessons being repeated loudly in unison and rapping of the teacher's ruler on the table. 3. What had been put up in the bulletin-board? Ans.  Orders had been put up in the bulletin board to teach German  in the schools of Alsace and Lorraine by the Germans. 4. What changes did the order from Berlin cause in school that day? Ans. Because of the order that came from Berlin M.Hamel was go...

Class 12 English Ncert solutions The Roadside Stand

Class 12 English Ncert solutions The Roadside Stand                                                                                                                                       The Roadside Stand                                                                                     by Robert Frost Think it out 1. The city folk who drove through the countryside hardly paid any heed to the roadside stand or to the people who ran it. ...