Skip to main content

Class 12 Question Paper Alternative English Vibyor AHSEC 2017

Alternative English  Year - 2017 Full Marks : 100 

Class 12 Ncert Solutions Maths Differential Equations


                                      Class 12 Ncert Solutions Maths Differential Equations
                                                                     Exercise 9.5


Previous Exercises
Exercise 9.1 &9.2
Exercise 9.4

Next Exercises
Exercise 9.6



In each of the Exercises 1 to 10 , sow that the given differential equation is homogeneous and solve each of them.

1. \((x^2+xy)\) dy = \((x^2+y^2)\) dx

Sol: The given equation can be written as follows

\begin{align}
\frac{dy}{dx}&=\frac{x^2+y^2}{x^2+xy}\\
\\
\frac{dy}{dx}&={x^2(1+\frac{y^2}{x^2})\over x^2(1+\frac{y}{x})}\\
\\
\frac{dy}{dx}&={(1+\frac{y^2}{x^2})\over (1+\frac{y}{x})}\tag 1\\
\\
&=g({y\over x})\\

\end{align}
Thus the given differential equation is a homogeneous equation.

Let y =vx, therefore $$ \frac{dy}{dx} = v+ x\frac{dv}{dx}$$.
Substituting these values in equation (1) we get
\begin{align}
v+x\frac{dv}{dx} &= \frac{1+\frac{v^2x^2}{x^2}}{1+\frac{vx}{x}}\\
\\
v+ x\frac{dv}{dx}&=\frac{1+v^2}{1+v}\\
\\
x\frac{dv}{dx}&=\frac{1+v^2}{1+v}-v\\
\\
x\frac{dv}{dx}&=\frac{1+v^2-v-v^2}{1+v}\\
\\
x\frac{dv}{dx}&=\frac{1-v}{1+v}\\
\\
\frac{1+v}{1-v}\ dv&=\frac{dx}{x}\\
\\
\frac{2-(1-v)}{1-v}\ dv&=\frac{dx}{x}\\
\\
\frac{2}{1-v}dv - dv &=\frac{dx}{x}\\
\\
-2\frac{d(1-v)}{1-v}-dv&=\frac{dx}{x}\\
\\
2\frac{d(1-v)}{1-v}+dv&=-\frac{dx}{x}\\
\end{align}
Integrating both sides of the equation we get
\begin{align}
2\int \frac{d(1-v)}{1-v}\ dv + \int dv&=- \int \frac{dx}{x}\\
2\log |1-v| + v&=-\log x + \log C\\
2\log |1-v| + v&= \log \frac{C}{x}\\
\end{align}
Substituitng \(v=\frac{y}{x}\) in the above equation we get
\begin{align}
2\log |1-v| + v &= \log \frac{C}{x}\\
\\
2\log |1-\frac{y}{x}| + \frac{y}{x}\log e &= \log \frac{C}{x}\\
\\
\log |1-\frac{y}{x}|^2+ \log e^{\frac{y}{x}} &= \log \frac{C}{x}\\
\\
\log \left(1-\frac{y^2}{x^2}\right)e^{\frac{y}{x}} &=\log \frac{C}{x}\\
\\
\left(1-\frac{y^2}{x^2}\right)e^{\frac{y}{x}} &=\ \frac{C}{x}\\
\\
x^2-y^2 &=\frac{x^2C}{xe^{\frac{y}{x}}}\\
\\
x^2-y^2 &= xCe^{-\frac{y}{x}}\\
\end{align}
This is the required general solution of the given differential equation.

2. \(y^{'}=\frac{x+y}{x}\)

Sol: The above equation can be written as
\begin{align}
\frac{dy}{dx}&=\frac{x+y}{x}\\
\\
\frac{dy}{dx} &=1+\frac{y}{x} \tag 1\\
&=g(\frac{y}{x})
\end{align}
Thus the given differential equation is  homogeneous.
Let y =vx. Therefore, $$ \frac{dy}{dx} = v+x\frac{dv}{dx}$$
Substituting these values in eq (1) we get
\begin{align}
v+x\frac{dv}{dx} &= 1+\frac{vx}{x}\\
v+ x\frac{dv}{dx}&=1+v\\
x\frac{dv}{dx}&=1+v-v\\
dv&=\frac{dx}{x}\\
\end{align}
Integrating both sides of the equation we get
\begin{align}
\int \ dv &=\frac{dx}{x}\\
v =\log x + C\\
\end{align}
Substituitng \(v=\frac{y}{x}\) in the above equation we get
\begin{align}
\frac{y}{x} &= \log x + C\\
y &=x\log x + xC\\
\end{align}
This is the required solution of the differential equation.

3.(x-y) dy - (x+y) dx=0

 Sol: The above equation can be written as
\begin{align}
\frac{dy}{dx}&=\frac{x+y}{x-y}\\
\\
\frac{dy}{dx} &=\frac{1+\frac{y}{x}}{1-\frac{y}{x}} \tag 1\\
&=g(\frac{y}{x})
\end{align}
Thus the given differential equation is  homogeneous.
Let y =vx. Therefore, $$ \frac{dy}{dx} = v+x\frac{dv}{dx}$$
Substituting these values in eq (1) we get
\begin{align}
v+x\frac{dv}{dx} &= \frac{1+\frac{vx}{x}}{1-\frac{vx}{x}}\\
v+ x\frac{dv}{dx}&=\frac{1+v}{1-v}\\
x\frac{dv}{dx}&=\frac{1+v}{1-v}-v\\
x\frac{dv}{dx}&=\frac{1+v-v+v^2}{1-v}\\
x\frac{dv}{dx}&=\frac{1+v^2}{1-v}\\
\frac{1-v}{1+v^2}dv&=\frac{dx}{x}\\
\end{align}
Integrating both sides of the above equation we get
\begin{align}
\int \frac{1-v}{1+v^2}dv&=\int \frac{dx}{x}\\
\int \frac{1}{1+v^2}dv- \int \frac{vdv}{1+v^2}&=\frac{dx}{x}\\
\implies \tan^{-1} v -\frac{1}{2}\log |1+v^2| &= \log x + C\\

\end{align}
Substituitng \(v=\frac{y}{x}\) in the above equation we get
\begin{align}
\tan^{-1} v -\frac{1}{2}\log |1+\frac{y}{x}^2| &= \log x + C\\
\implies  \tan^{-1} v &=\frac{1}{2}\log |x^2+y^2| - \frac{1}{2}\log x^2+\log x + C\\
\implies \tan^{-1} v &=\frac{1}{2}\log |x^2+y^2| - \log x+\log x + C\\
\implies \tan^{-1} v &=\frac{1}{2}\log |x^2+y^2|  + C\\
\end{align}
This is the required solution of the differential equation.

4. \((x^2 -y^2) dx +2xy\ dy= 0\)

Sol: The given differential equation can be written as
\begin{align}
\frac{dy}{dx}&=\frac{x^2 -y^2}{-2xy}\\
\\
\frac{dy}{dx} &=\frac{1 -\frac{y^2}{x^2}}{-2\frac{y}{x}} \tag 1\\
&=g\left(\frac{y}{x}\right)
\end{align}
Thus the given differential equation is  homogeneous.
Let y =vx. Therefore, $$ \frac{dy}{dx} = v+x\frac{dv}{dx}$$
Substituting these values in eq (1) we get
\begin{align}
v+x\frac{dv}{dx}&=-\frac{1}{2}\left(\frac{1-v^2}{v}\right)\\
\\
x\frac{dv}{dx}&=\frac{v^2-1}{2v}-v\\
\\
x\frac{dv}{dx}&=\frac{v^2-1-2v^2}{}\\
\\
x\frac{dv}{dx}&=\frac{-1-v^2}{2v}\\
\\
\frac{2v}{1+v^2}\ dv&=-\frac{dx}{x}\\
\end{align}
Integrating both sides of the equation we get
\begin{align}
\int \frac{2v}{1+v^2}\ dv&=-\int \frac{dx}{x}\\
\\
\int\frac{d(1+v^2)}{1+v^2} &=-\int\frac{dx}{x}\\
\\
\log |1+v^2| &=-\log x+\log C\tag 2\\
\end{align}
Substituitng \(v=\frac{y}{x}\) in the above equation we get
\begin{align}
\log |1+\frac{y^2}{x^2}| &=-\log x+\log C\\
\\
\log |\frac{x^2+y^2}{x^2}| &=\log \frac{C}{x}\\
\\
\frac{x^2+y^2}{x^2} &=\frac{C}{x}\\
\\
x^2 +y^2 &= xC\\
\end{align}
This is the required general solution of the given differential equation.

5.\(x^2\frac{dy}{dx}=\ x^2-2y^2+xy\)

Sol: The above equation can be written as
\begin{align}
\frac{dy}{dx}&=\frac{x^2 -2y^2 +xy}{x}\\
\\
\frac{dy}{dx} &=1-2\frac{y^2}{x^2} + \frac{y}{x} \tag 1\\
&=g\left(\frac{y}{x}\right)
\end{align}
Thus the given differential equation is  homogeneous.
Let y =vx. Therefore, $$ \frac{dy}{dx} = v+x\frac{dv}{dx}$$
Substituting these values in eq (1) we get
\begin{align}
v+x\frac{dv}{dx} &= 1-2v^2 + v\\
 x\frac{dv}{dx}&=1-2v^2 + v-v\\
x\frac{dv}{dx}&=1-2v^2\\

\frac{dv}{1-2v^2}&=\frac{dx}{x}\\
\end{align}
Integrating both sides of the above equation we get
\begin{align}

\int \frac{dv}{1-2v^2}&=\int \frac{dx}{x}\\
\\
\implies \frac{dv}{1^2-(\sqrt2v)^2} &=\frac{dx}{x}\\
\\
\implies \frac{1}{2\sqrt2}\log\left|\frac{1+\sqrt2v}{1-\sqrt2v}\right| &= \log x + C\\


\end{align}
The following formula has been used for integration
$$ \int\frac{dx}{a^2-x^2}=\frac{1}{2a}\log\left|\frac{a+x}{a-x}\right |+ C $$
Substituitng \(v=\frac{y}{x}\) in the above equation we get
\begin{align}
\frac{1}{2\sqrt2}\log\left|\frac{1+\sqrt2{y\over x}}{1-\sqrt2{y\over x}}\right| &= \log x + C\\
\\
\frac{1}{2\sqrt2}\log\left|\frac{x+\sqrt2y}{x-\sqrt2y}\right| &= \log x + C\\
\end{align}
This is the required solution of the differential equation.

6. \(x\ dy -y\ dx\ = \sqrt{x^2 + y^2}\ dx\)

Sol: The above equation can be written as 
\begin{align}
\frac{dy}{dx}&=\frac{\sqrt{x^2 +y^2} +y}{x}\\
\\
\frac{dy}{dx} &=\sqrt{1 + \frac{y^2}{x^2}} +\frac{y}{x} \tag 1\\
&=g\left(\frac{y}{x}\right)
\end{align}
Thus the given differential equation is  homogeneous.
Let y =vx. Therefore, $$ \frac{dy}{dx} = v+x\frac{dv}{dx}$$
Substituting these values in eq (1) we get
\begin{align}
v + x\frac{dv}{dx} &= \sqrt{1+\frac{v^2x^2}{x^2}} + \frac{y}{x} \\
v+ x \frac{dv}{dx} &= \sqrt{1+v^2} + v \\
x \frac{dv}{dx} &= \sqrt{1+v^2} \\
\frac{dv}{\sqrt{1+ v^2}} &= \frac{dx}{x} \\
\end{align}
Integrating both sides of the above equation we get
\begin{align}

\int \frac{dv}{\sqrt{1+ v^2}} &= \int \frac{dx}{x}\\
\\
\implies \log |v+ \sqrt{v^2+1}| &= \log x + \log C\tag 2\\
\end{align}
The following formula has been used for integration
$$ \int\frac{dx}{a^2-x^2}=\frac{1}{2a}\log\left|\frac{a+x}{a-x}\right |+ C $$
Substituitng \(v=\frac{y}{x}\) in the above equation we get
\begin{align}
\log \left|\frac{y}{x}+ \sqrt{\frac{y^2}{x^2}+1}\right| &= \log x + \log C\\
\\
\log \left|\frac{y+ \sqrt{y^2+x^2}}{x}\right| &= \log xC\\
\\
\frac{y+\sqrt{x^2+y^2}}{x}&=xC\\
\\
y+\sqrt{x^2+y^2}&=x^2C\\
\end{align}
This is the required solution of the differential equation.

7. \(\left[x\cos\left(\frac{y}{x}\right)+y\sin\left(\frac{y}{x}\right)\right]y\ dx= \left[y\sin\left(\frac{y}{x}\right)-x\cos\left(\frac{y}{x}\right)\right]x\ dy\)

Sol: The given differential equation can be written as
\begin{align}
\frac{dy}{dx} &= \frac{y\left[x\cos\left({y\over x}\right) + y\sin\left({y\over x}\right)\right]}{x\left[y\sin\left({y\over x}\right) - x\cos\left({y\over x}\right)\right]}\\
\\
\frac{dy}{dx} &=\frac{y}{x} \frac{\left[\cos\left({y\over x}\right) + \frac{y}{x}\sin\left({y\over x}\right)\right]}{\left[\frac{y}{x}\sin\left({y\over x}\right) - \cos\left({y\over x}\right)\right]}\tag 1\\
&=g\left(\frac{y}{x}\right)\\
\end{align}
Thus the given differential equation is  homogeneous.
Let y =vx. Therefore, $$ \frac{dy}{dx} = v+x\frac{dv}{dx}$$
Substituting these values in eq (1) we get
\begin{align}
v+x\frac{dv}{dx} &=v\frac{\left[\cos v + v\sin v\right]}{\left[v\sin v - \cos v\right]}\\
\\
v+x\frac{dv}{dx}&=\frac{v\cos v + v^2\sin v}{v\sin v - \cos v}\\
\\
x\frac{dv}{dx}&=\frac{v\cos v + v^2\sin v}{v\sin v - \cos v} -v\\
\\
x\frac{dv}{dx}&=\frac{v\cos v + v^2\sin v - v^2\sin v + v\cos v}{v\sin v - \cos v} \\
\\
x\frac{dv}{dx}&=\frac{2v\cos v }{v\sin v - \cos v} \\
\\
\frac{v\sin v - \cos v}{2v\cos v }\ dv &=\frac{dx}{x}\\
\end{align}
Integrating both sides of the equation we get
\begin{align}
\int \frac{v\sin v - \cos v}{2v\cos v }\ dv &=\int \frac{dx}{x}\\
\\
\int  \frac{\sin v} {2\cos v}\ dv - \frac{dv}{2v} &=\int \frac{dx}{x}\\
\\
\int \tan v\ dv - \int \frac{dv}{v} &= 2\int \frac{dx}{x}\\
\\
\log|\sec v| -\log v&=2\log x + \log A\\
\\
\log\left|\frac{\sec v}{v}\right| &=\log Ax^2\\
\\
\implies |\frac{\sec v}{v}|&=Ax^2\\
\\
\sec v =vAx^2\\
\end{align}
now, substituitng \(v=\frac{y}{x}\) in the above equation we get
\begin{align}
\sec \left(\frac{y}{x}\right) &= \frac{y}{x}Ax^2\\
\sec \left(\frac{y}{x}\right) &= Axy\\
\cos \left(\frac{y}{x}\right) &= \frac{1}{Axy}\\
\implies xy \cos \left(\frac{y}{x}\right) &= \frac{1}{A}\\
\implies xy \cos \left(\frac{y}{x}\right) &= C\\
\end{align}
This is the required solution of the given differential equation.

8.  \(x\frac{dy}{dx} - y + \sin \left(\frac{y}{x}\right)= 0\)

Sol: The given differential equation can be written as
\begin{align}
\frac{dy}{dx} &= \frac{y - x\sin\left(\frac{y}{x}\right)}{x}\\
&= \frac{y}{x} - \sin\left(\frac{y}{x}\right)\tag (1)\\
&= g\left(\frac{y}{x}\right)\\
\end{align}
Thus the given differential equation is  homogeneous.
Let y =vx. Therefore, $$ \frac{dy}{dx} = v+x\frac{dv}{dx}$$
Substituting these values in eq (1) we get
\begin{align}
v+x\frac{dv}{dx} &= \frac{vx}{x} - \sin\left(\frac{vx}{x}\right)\\
\\
v+x\frac{dv}{dx} &= v- \sin v \\
\\
x{dv}{dx} &= -sinv\\
\\
\frac{dv}{sinv}&=-\frac{dx}{x}\\
\end{align}
Integrating both sides of the equation we get
\begin{align}
\int \frac{dv}{sinv}&=-\int \frac{dx}{x}\\
\\
\int cosec \ v\ dv&=-\frac{dx}{x}\\
\\
\log |cosec\ v - \cot v| &= -\log |x| + \log C\\
\\
\log |cosec\ v - \cot v| &= \log\frac{C}{x}\\
cosec\ v -\cot v =\frac{C}{x}\\
\frac{1}{\sin v} - \frac{ \sin v}{\cos v} &=\frac{C}{x}\\
\\
\frac{1-\cos v}{\sin v}&=\frac{C}{x}\\
\\
x[1- \cos v] &= C\sin v\\
\end{align}
Now, substituitng \(v=\frac{y}{x}\) in the above equation we get
\begin{align}
x[1- \cos\left(\frac{y}{x}\right)] &= C\sin \left(\frac{y}{x}\right)\\
\end{align}
This is the required solution of the given differential equation.

9. \(ydx + x\log\left( \frac{y}{x}\right) dy - 2x dy = 0\)

Sol:  The given differential equation can be written as
\begin{align}
\frac{dy}{dx}&= \frac{-y}{x\log \frac{y}{x}-2x}\\
\\
&= \frac{\frac{-y}{x}}{\log \frac{y}{x}-2}\tag 1\\
&=g\left(\frac{y}{x}\right)
\end{align}
Let y =vx. Therefore, $$ \frac{dy}{dx} = v+x\frac{dv}{dx}$$
Substituting these values in eq (1) we get
\begin{align}
v+x\frac{dv}{dx}&=\frac{-v}{\log v -2}\\
\\
x\frac{dv}{dx}&=\frac{-v}{\log v -2}-v\\
\\
x\frac{dv}{dx}&=\frac{-v-v\log v + 2v}{\log v -2}\\
\\
x\frac{dv}{dx}&=\frac{v-v\log v }{\log v -2}\\
\\
\frac{\log v - 2}{v-v\log v}&=\frac{dx}{x}\\
\\
\end{align}
Integrating both sides of the equation we get
\begin{align}
\int \frac{\log v - 2}{v-v\log v}&=\int \frac{dx}{x}\\
\\
 \int \frac{\log v - 2}{v(1-\log v)}&=\int \frac{dx}{x}\\
\\
 \int \frac{(\log v - 1) -1}{v-v\log v}&=\int \frac{dx}{x}\\
\\
 -\int \frac{dv}{v} - \int \frac{dv}{v(1-\log v)}&=\int \frac{dv}{dx}\\
\\
 -\int \frac{dv}{v} + \int \frac{dv}{v(\log v-1)}&=\int \frac{dv}{dx}\\
\\
 -\int \frac{dv}{v} + \int \frac{d(\log v)}{\log v-1}&=\int \frac{dv}{dx}\\
\\
-\log |v| + \log|\log |v| -1| &=\log |x| + \log C\\
\\
\log \frac{\log v -1}{v}&=\log xC\\
\\
\frac{\log v -1}{v}&= xC\\
\end{align}
Now, substituitng \(v=\frac{y}{x}\) in the above equation we get
\begin{align}
\frac{\log \left(\frac{y}{x}\right) -1}{\frac{y}{x}}&= xC\\
\\
\log \left(\frac{y}{x}\right) -1&=Cx\times\frac{y}{x}\\
\\
\log \left(\frac{y}{x}\right) -1&=Cy\\
\end{align}
This is the required solution of the given differential equation.

10. \((1+e^{\frac{x}{y}}) dx + e^{\frac{x}{y}}(1-\frac{x}{y})dy=0\)

Sol: The given differential equation can be written as 

\begin{align}
\frac{dx}{dy}&= -\frac{e^{\frac{x}{y}}(1-\frac{x}{y})}{(1+e^{\frac{x}{y}})}\tag 1\\
\\
&=h\left(\frac{x}{y}\right)\\
\end{align}
Thus the differential equation is homogeneous.
Let y =vx. Therefore, $$ \frac{dy}{dx} = v+x\frac{dv}{dx}$$
Substituting these values in eq (1) we get
\begin{align}
v+y\frac{dv}{dy}&= -\frac{e^{v}(1-v)}{(1+e^v)}\\
\\
y\frac{dv}{dy}&= -\frac{e^{v}(1-v)}{(1+e^v)}-v\\
\\
y\frac{dv}{dy}&= \frac{v+e^v}{(1+e^v)}\\
\\
\frac{(1+e^v)}{v+e^v}\ dv &=-\frac{dy}{y}\\
\\
\frac{d(v+e^v)}{v+e^v}\ dv &=-\frac{dy}{y}\\
\\
\log |v+e^v| &=-\log y + \log C\\
\\
\log |v+e^v| &=-\log \frac{C}{y}\\
\\
v+e^v &=\frac{C}{y}\\
\\
\end{align}
Now, substituitng \(v=\frac{y}{x}\) in the above equation we get
\begin{align}
\frac{x}{y}+e^{\frac{x}{y}} &=\frac{C}{y}\\
\\
x+ye^{\frac{x}{y}}&=C\\
\end{align}
This is the required solution of the given differential equation.

For each of the differential equations in Exercises from 11 to 15, find the particular solution satisfying the given condition:

11. (x+y)dy + (x-y)dx =0

Sol: The given differential equation can be written as 
\begin{align}
\frac{dy}{dx}&=-\frac{(x-y)}{(x+y)}\\
\\
\frac{dy}{dx}&=-\frac{x(1-\frac{y}{x})}{x(1+\frac{y}{x})}\\
\\
\frac{dy}{dx}&=-\frac{(1-\frac{y}{x})}{(1+\frac{y}{x})}\\
\\
&=g\left(\frac{y}{x}\right)\\
\end{align}
Let y =vx. Therefore, $$ \frac{dy}{dx} = v+x\frac{dv}{dx}$$
Substituting these values in eq (1) we get
\begin{align}
v+x\frac{dv}{dx}&= -\frac{(1-v)}{(1+ v)}\\
\\
x\frac{dv}{dx}&= -\frac{(1-v)}{(1+ v)}-v\\
\\
x\frac{dv}{dx}&= \frac{-1+v-v-v^2}{(1+ v)}\\
\\
x\frac{dv}{dx}&= -\frac{(1+v^2)}{(1+ v)}\\
\\
\frac{1+v}{1+v^2}&= \frac{-dx}{x}\\
\\
\frac{dv}{1+v^2} + \frac{v}{1+v^2}\ dv &= -\frac{dx}{x}\\
\end{align}

Integrating both sides we get
\begin{align}
\int \frac{dv}{1+v^2} +\int  \frac{v}{1+v^2}\ dv &= -\int \frac{dx}{x}\\
\\
\tan^{-1}v +\frac{1}{2}\log |1+v^2|&= -\log x + A\\
\\
2\tan^{-1}v +\log |1+v^2|&= -2\log x + 2A\\
\\
2\tan^{-1}v +\log |1+v^2|&= -2\log x + C\\
\end{align}
Now, substituitng \(v=\frac{y}{x}\) in the above equation we get
\begin{align}
2\tan^{-1}\frac{y}{x} +\log |1+\frac{y^2}{x^2}|&= -2\log x + C\\
\\
2\tan^{-1}\frac{y}{x} +\log |x^2+ y^2| - \log x^2&= -\log x^2 + C\\
\\
2\tan^{-1}\frac{y}{x} +\log |x^2+ y^2| &=  C\tag 2\\
\\
\end{align}
When y =1 then x=1. Putting these values in the baove equation we get
\begin{align}
2\tan^{-1}\frac{1}{1} +\log |1^2+ 1^2| &=  C\\
\\
C&=\log 2 + \tan^{-1}1\\
\\
C&=\log 2 + \frac{\pi}{2}\\
\end{align}
Putting this value of C in eq (2) we get
\begin{align}
2\tan^{-1}\frac{y}{x} +\log |x^2+ y^2| &=  \log 2 + \frac{\pi}{2}
\end{align}
This is the required particular solution of the differential equation.

12. \(x^2dy + y + y^2)dx=0\)

Sol: The given equation can be written as
\begin{align}
\frac{dy}{dx}&=-\frac{xy+y^2}{x^2}\\
&=-x^2\frac{\frac{y}{x}+\frac{y^2}{x^2}}{x^2}\\
&=-\left(\frac{y}{x} +\frac{y^2}{x^2}\right)\tag 1\\
&=g\left(\frac{y}{x}\right)\\
\end{align}
Let y =vx. Therefore, $$ \frac{dy}{dx} = v+x\frac{dv}{dx}$$
Substituting these values in eq (1) we get
\begin{align}
v+x\frac{dv}{dx}&=-(v+v^2)\\
\\
v+x\frac{dv}{dx}&=-v-v^2\\
\\
x\frac{dv}{dx}&=-2v-v^2\\
\\
\frac{dv}{2v+v^2}&=-\frac{dx}{x}\\
\\
\frac{dv}{v(v+2}&=-\frac{dx}{x}\\
\end{align}
Integrating both sides of the equation we get
\begin{align}
\int \frac{dv}{v(v+2)} &=-\int \frac{dx}{x}\\
\\
\int \frac{1}{2}\left[\frac{1}{v}-\frac{1}{v+2}\right]\ dv &=-\int \frac{dx}{x}\\
\\
\frac{1}{2}\left[\log v -\log |v+2|\right] &= -\log x + \log C\\
\\
\frac{1}{2}\log \left(\frac{v}{v+2}\right)&=\log\frac{C}{x}\\
\\
\log \left(\frac{v}{v+2}\right)&=2\log\frac{C}{x}\\
\\
\log \left(\frac{v}{v+2}\right)&=\log\left(\frac{C}{x}\right)^2\\
\\
\frac{v}{v+2}&= \frac{C^2}{x^2}\\
\end{align}
Now, substituitng \(v=\frac{y}{x}\) in the above equation we get
\begin{align}
\frac{\frac{y}{x}}{\frac{y}{x}+2}&=\frac{C^2}{x^2}\\
\\
\frac{x^2y}{y+2x}&=C^2\tag 2\\
\end{align}
given that when y=1 then x=1. Putting these values in above equation we get
\begin{align}
C^2 &= \frac{1\times1}{1+2}\\
&=\frac{1}{3}\\
\end{align}
Substituting the value of C in eq (2) we get
\begin{align}
\frac{x^2y}{y+2x}&=\frac{1}{3}\\
\\
y+2x =3x^2y\\
\end{align}
This is the required particular solution of the given differential equation.

13. \(\left[x\sin ^2\left(\frac{y}{x}\right)-y\right]dx +xdy=0\)

Sol: The given equation can be written as follows
\begin{align}
\frac{dy}{dx}&=-\frac{\left[x\sin ^2\left(\frac{y}{x}\right)-y\right]}{x}\\
\\
\frac{dy}{dx}&=\frac{y}{x}-\sin ^2\left(\frac{y}{x}\right)\tag 1\\
&=g\left(\frac{y}{x}\right)\\
\end{align}
Let y =vx. Therefore, $$ \frac{dy}{dx} = v+x\frac{dv}{dx}$$
Substituting these values in eq (1) we get
\begin{align}
v+x\frac{dv}{dx} &= v - \sin ^2 v\\
\\
\frac{dv}{dx}&=-\sin ^2 v\\
\\
\frac{dv}{\sin ^2 v}&=-\frac{dx}{x}\\
\end{align}
Integrating both sides  of the equation we get
\begin{align}
\int \frac{dv}{\sin ^2 v}&=-\int \frac{dx}{x}\\
\\
\int cosec^2v\ dv &=-\int\frac{dx}{x}\\
\\
-\cot v&= -\log x-\log C\\
\cot v&= \log Cx\\
\end{align}
Now, substituitng \(v=\frac{y}{x}\) in the above equation we get
\begin{align}
\cot \frac{y}{x}&=\log (xC)\tag 2\\
\end{align}
given that y=\(\frac{\pi}{4}\) then x=1.Putting these values in eq (2) we get
\begin{align}
\cot \frac{\frac{\pi}{4}}{1}&=\log C\\
\\
\cot \frac{\pi}{4}&=\log C\\
\log C&=1\\
C&=e^1=e\\
\end{align}
Substituting the value of C in equation 2 we get
$$ \cot \frac{y}{x}=\log (xe) $$
This is the required particular solution of given differential equation.

14. \(\frac{dy}{dx} - \frac{y}{x}+cosec\left(\frac{y}{x}\right)=0\)

Sol: The given differential equation can be written as
\begin{align}
\frac{dy}{dx}&=\frac{y}{x}-cosec\left(\frac{y}{x}\right)\\
\end{align}
Let y =vx. Therefore, $$ \frac{dy}{dx} = v+x\frac{dv}{dx}$$
Substituting these values in eq (1) we get
\begin{align}
v+x\frac{dv}{dx}&=v-cosec\ v\\
\\
x\frac{dv}{dx}&=-cosec\ v\\
\\
\frac{dv}{cosec\ v}&=-\frac{dx}{x}\\
 \end{align}
Integrating both sides of the equation we get
\begin{align}
\int \frac{dv}{cosec\ v}&=-\int \frac{dx}{x}\\
\int \sin v\ dv&=-\int \frac{dx}{x}\\
\\
-\cos v &=-\log x- \log C\\
\cos v&=\log xC\\
\end{align}
Now, substituitng \(v=\frac{y}{x}\) in the above equation we get
\begin{align}
\cos\frac{y}{x}&=\log xC\tag 2\\
\end{align}
Given that when y=0 then x=1.Substituting these values in above equation we get
\begin{align}
\cos 0 &=\log (1\times C)\\
\log C&=1\\
C&=e^1\\
C&=e\\
\end{align}
Putting this value of C in eq(2) we get
\begin{align}
\cos \frac{y}{x}&=\log |xe|\\
\end{align}
This is the required particular solution of the given differential equation


15. \(2xy +y^2-2x^2\frac{dy}{dx}=0\)

Sol: The given differential equation can be written as
\begin{align}
\frac{dy}{dx} &=\frac{2xy+y^2}{2x^2}\\
&=\frac{y}{x}+\frac{1}{2}\frac{y^2}{x^2}\tag 1\\
&=g\left(\frac{y}{x}\right)\\
\end{align}
Let y =vx. Therefore, $$ \frac{dy}{dx} = v+x\frac{dv}{dx}$$
Substituting these values in eq (1) we get
\begin{align}
v+x\frac{dv}{dx}&=v+\frac{1}{2}v^2\\
x\frac{dv}{dx}&=\frac{1}{2}v^2\\
2\frac{dv}{v^2}&=\frac{dx}{x}\\
\end{align}
Integrating both sides of the equation we get
\begin{align}
2\int \frac{dv}{v^2}&=\int \frac{dx}{x}\\
\\
2\frac{v^{-2+1}}{-2+1}&=\log x+ C\\
\\
-2\frac{1}{v}&=\log x + C
\end{align}
Now, substituitng \(v=\frac{y}{x}\) in the above equation we get
\begin{align}
-2\frac{1}{\frac{y}{x}}&=\log x + C\tag 2\\
\\
-2\frac{x}{y}&=\log x + C\\
\end{align}
Given that y=2 when x=1. Putting these values in above equation we get
\begin{align}
-2\frac{1}{2}&=\log 1 + C\\
C&=-1\\
\end{align}
Substituting the value of C in equation 2 we get
\begin{align}
-2\frac{x}{y} &=\log x -1\\
\frac{-2x}{\log x -1}&=y\\
y&=\frac{2x}{1-log|x|}\\
\end{align}
This is the required particular solution of the given differential equation.

16. A homogeneous differential equation of the form \(\frac{dy}{dx}=h\left(\frac{x}{y}\right)\) can be solved by making the substitution.
(A) y = vx  (B)   v=yx   (C) x=vy   (D) x=v.

Ans: The correct answer is option (C) beacuse only when we substitute x=vy , the function in \(\frac{x}{y}\) turns into a function of v.

17. Which of the following is a homogeneous differential equation?
(A) (4x+6y+5) dy - (3y+2x+4) dx=0
(B) (xy)dx -\(x^3+y^3\)dy=0
(C) \(x^3+2y^2\)dx +2xydy=0
(D) \(y^2dx + (x^2 -xy -y^2)\)dy =0

Sol: The correct answer is option  (D) because (D) can be written as
\begin{align}
\frac{dy}{dx}&=-\frac{y^2}{x^2-xy-y^2}\\
&=-\frac{y^2}{x^2(1-\frac{y}{x}-\frac{y^2}{x^2})}\\
&=-\frac{\frac{y^2}{x^2}}{1-\frac{y}{x}-\frac{y^2}{x^2}}\\
&=g\left(\frac{y}{x}\right)\\
\end{align}


                                           Class 12 Ncert Solution Maths Differential Equations

Previous Exercises
Exercise 9.1 &9.2
Exercise 9.4

Next Exercises
Exercise 9.6

Other chapters

Chapter 11 Three dimensional geometry
Chapter 13 Probability


Ncert Solutions for other subjects


Subject : English
A Thing of Beauty
The Roadside Stand
The Last Lesson
Going Places

Question paper for class 12  AHSEC
Chemistry
Physics
Maths
Alternative English 2016

Comments

Popular posts from this blog

Class 12 Ncert Solutions English Flamingo The Memoirs of a Chota Sahib

                                                               The Memoirs of a Chota Sahib                                                                                by John Rowntree Think as you Read  Answers for other Lessons A Thing of Beauty The Roadside Stand The Last Lesson Going Places 1. Briefly describe the scene observed by the author from the veranda of his bungalow on the bank of the Brahmaputra. Ans: The author Rowntree described that from the veranda of his bungalow he had a splendid view of the river and its shipping and, beyond, the Himalayas. In the forground was Peacock Island, with ...

Class 12 Ncert Solutions for English Flamingo The Last Lesson

Class 12 Ncert Solutions for English Flamingo The Last Lesson Think as you read 1. What was Franz expected to be prepared with for school that day? Ans. Franz was expected to be prepared with participles that day as M.Hamel would question them on participles. But Franz had not learnt anything about participles. 2. What did Franz notice that was unusual about the school that day? Ans.  Franz noticed that the school was  calm and quiet like a Sunday morning. On any other day  there would be great commotion in the school caused by the opening and closing of the desks,lessons being repeated loudly in unison and rapping of the teacher's ruler on the table. 3. What had been put up in the bulletin-board? Ans.  Orders had been put up in the bulletin board to teach German  in the schools of Alsace and Lorraine by the Germans. 4. What changes did the order from Berlin cause in school that day? Ans. Because of the order that came from Berlin M.Hamel was go...

Class 12 English Ncert solutions The Roadside Stand

Class 12 English Ncert solutions The Roadside Stand                                                                                                                                       The Roadside Stand                                                                                     by Robert Frost Think it out 1. The city folk who drove through the countryside hardly paid any heed to the roadside stand or to the people who ran it. ...