Loading [MathJax]/jax/output/CommonHTML/jax.js
Skip to main content

Class 12 Question Paper Alternative English Vibyor AHSEC 2017

Alternative English  Year - 2017 Full Marks : 100 

Class 12 Ncert Solutions Maths Differential Equations

                                    Class 12 Ncert Solutions Maths Differential Equations

                                                                       Exercise 9.6


Previous Exercises
Exercise 9.1 &9.2
Exercise 9.4
Exercise 9.5
For each of the differential equations given in Exercises 1 to 12, find the general solution:

1. dydx+2y=sinx

Sol: Comparing the given differential equation with dydx+Py=Q
we get P=2 and Q=sinx
Now, I.F(integrating factor) =eP dx=e2dx=e2x
Hence the solution of the equation is given by
y(I.F)=(Q×I.F) dx+Cy.e2x=e2xsinx dx+C
Let I = e2xsinx dx
I=sinxe2x2cosxe2x2 dx(Integrating by parts)
I=12sinxe2x12[cosxe2x2(sinx)e2x2 dx]
I= 12sinxe2x14cosxe2x14sinxe2x2 dx
I= 12sinxe2x14cosxe2xI4
I+I4=14(2sinxe2xcosxe2x)
I=15(2sinxcosx)e2x
Substituting the value of I in eq (1) we get
y.e2x=15(2sinxcosx)e2x+C
y=15(2sinxcosx)+Ce2x
This is the required general solution of the given differential equation.

2. dydx+3y=e2x

Sol: Comparing the given differential equation with dydx+Py=Q
we get P=3 and Q=e^{-2x}
Thus I.F = eP dx=e3 dx=e3x
Hence the solution of the equation is
y(I.F)=(Q×I.F) dx+Cy.e3x=(e2x×e3x) dx+Cy.e3x=ex dx+Cy.e3x=ex+Cy=exe3x+Ce3xy=e2x+Ce3x

3. dydx+yx=x2

Sol: Comparing the given equation with dydx+Py=Q
we get P = 1x and Q=x2
I.F = e1x dx=elogx=x
Hence the solution of the equation is given by
y(I.F)=(Q×I.F) dx+Cy.x=(x.x3)+Cxy=x3 dx+Cxy=x44+C

4. dydx+(secx)y=tanx

Sol: Comparing the given equation with dydx+Py=Q
we get P = secx and Q = tanx
I.F. =esecx=elog|secx+tanx|=secx+tanx
Hence the solution of the equation is given by
y(I.F)=(Q×I.F) dx+Cy.(secx+tanx)=(tanx×(secx+tanx)) dx+Cy.(secx+tanx)=tanxsecx dx+tan2x dx+Cy.(secx+tanx)=secx+(sec2x1) dx+Cy.(secx+tanx)=secx+(sec2x) dx1 dx+Cy.(secx+tanx)=secx+tanxx+C

5. cos2xdydx+y=tanx

Sol: The given equation can be written as
dydx+sec2x.y=tanxsec2x
Comparing the equation with dydx+Py=Q
we get P =sec2x and Q =tanxsec2x

I.F. = esec2x dx=etanx
Hence the solution of the differential equation is
y(I.F)=(Q×I.F) dx+Cy.etanx=(tanxsec2x×etanx) dx+Cy.etanx=etanxtanx d(tanx)+Cy.etanx=tanx.etanxdd(tanx)(tanx)etanx d(tanx)+Cy.etanx=tanx.etanxetanx d(tanx)+Cy.etanx=tanx.etanxetanx+Cy.etanx=(tanx1) etanx+Cy=(tanx1)etanxetanx+Cetanxy=(tanx1)+Cetanx

6. xdydx+2y=x2logx

Sol: The given equation can be written as
dydx+2xy=xlogx

Comparing with the equation dydx+Py=Q
we get P =2x and Q=xlogx
I.F = eP dx=e2x dx=e2logx=elogx2=x2
Hence the solution of the differential equation is
y(I.F)=(Q×I.F) dx+Cy.x2=x2(x logx) dx+Cy.x2=x3logx dx+Cy.x2=logx.x441x.x44 dx+C(integrating by parts)y.x2=logx.x4414x3 dx+Cy.x2=logx.x4414x44+Cy.x2=logx.x44x416+Cy=logx.x24x216+Cx2y=x216(4log|x|1)+Cx2

7.  x logx dydx+y=2x logx

Sol: The given differential equation can be written as
dydx+1xlogxy=2xlogxxlogxdydx+1xlogxy=2x2
Comparing with the equation dydx+Py=Q
we get P=1xlogx and Q =2x2
I.F. = eP dx=e1xlogx dx=ed(logx)logx=elog|logx|=logx
Hence the solution of the given differential is
y(I.F)=(Q×I.F) dx+Cy.logx=logx2x2+Cy.logx=2x2 logx dx+Cy.logx=2logx.x2[ddx(logx).x2 dx] dx+C(integrating by parts)y.logx=2logxx111x.x11 dx+Cy.logx=21xlogx+x2 dx+Cy.logx=2logxx+x11+Cy.logx=2logxx1x+Cy.logx=2x(log|x|+1)+C

8. (1+x2) dy+2xy dx=cotx dx(x0)

Sol: The given equation can be written as dydx+2x1+x2y=cotx1+x2
Comparing the above equation with dydx+Py=Q
we get
P=2x1+x2   and Q=cotx1+x2
I.F. = eP dx=e2x1+x2 dx=ed(1+x2)1+x2 dx=elog|x2+1|=x2+1
Hence the solution of the differential equation is
y(I.F)=(Q×I.F) dx+Cy.(x2+1)=(x2+1)cotxx2+1 dx+Cy.(x2+1)=cotx dx+Cy.(x2+1)=log|sinx|+Cy=log|sinx|x2+1+cx2+1y=(x2+1)1 log|sinx|+C(x2+1)1


9. xdydx+yx+xycotx=0(x0)

Sol: The given equation can be written as
xdydx+y(1+xcotx)x=0dydx+(1x+cotx)y1=0dydx+(1x+cotx)y=1
Comparing with the equation dydx+Py=Q we get
P = 1x+cotx and Q =1
I.F. =ePdx=e(1x+cotx) dx=elog|x|+log|sinx|=elog|xsinx|=xsinx
Hence the solution of the differential equation is
y(I.F)=(Q×I.F) dx+Cy.(xsinx)=xsinx.1 dx+Cy.(xsinx)=xsinx dx+Cy.(xsinx)=x(cosx)1.(cosx) dx+C(integration by parts)y.(xsinx)=xcosx+cosx dx+Cy.(xsinx)=xsinx+sinx+Cy=xcosxxsinx+sinxxsinx+Cxsinxy=cosxsinx+1x+Cxsinxy=cotx+1x+Cxsinx

10. (x+y)dydx=1

Sol: The given equation can be written in the form
dydx=1x+ydxdy=x+ydxdyx=y

This is a linear differential equation of the type dxdy+Px=Q
Comparing the equation we get P = -1 and Q = y
I.F.  =e(1) dx=edx=ex
Hence the solution of the equation is
x.(I.F)=(Q×I.F)+Cx.ex=y.ex+Cx.ex=yex[ddyy.ex dx] dx+C(integration by parts)x.ex=yex11.ex1 dx+Cx.ex=y.ex+ex+Cx.ex=y.ex+ex1+Cx.ex=y.exex+Cx=y.exex+Cexx=y1+Cexx+y+1=Cex

11. y dx+(x2y2) dy=0

Sol: The given equation can be written as
dx+xy dyy dy=0dxdy=xy+ydxdy+xy=y
This is a linear differential equation of the form dxdy+Px=Q where P =1y and Q = y.
I.F. =ePdy=e1y dy=elogy=y
Hence the solution of the equation is
x.(I.F)=(Q×I.F)+Cx.y=y.y dy+Cxy=y2 dy+Cxy=y33+C

12. (x+3y2)dydx=y

Sol: The given equation can be written as
dydx=yx+3y2dxdy=x+3y2ydxdy=xy+3ydxdyxy=3y
This is a linear differential equation of the form dxdy+Px=Q
where P =1y and Q = 3y.
I.F. =eP dy=e1y dy=elogy=elogy1=y1=1y
Hence the solution of the equation is
x.(I.F)=(Q×I.F)+Cx.1y=(3y.1y) dy+Cx.1y=3 dy+Cx.1y=3y+Cx=3y2+yC

For each of the differential equations given in Exercises 13 to 15, find a particular solution satisfying the given condition:

13. dydx+2ytanx=sinx;y=0 when x=π3

Sol: The given equation is a linear differential equation of type dydx+Py=Q
Here P = 2tanx and Q =sinx
I.F. = e2tanx dx=e2log|secx=elog|secx|2=(secx)2
Hence the general solution of the given equation is
y(I.F)=(Q×I.F)+Cy.sec2x=(sec2x)sinx dx+Cy.sec2x=sinxcosxsecx dx+Cy.sec2x=tanxsecx dx+Cy.sec2x=secx+C
Given that y =0 when x=π3. Putting these values in the above equation we get
0=secπ3+CC=2
Substituting the value of C in eq (1) we get
y.sec2x=secx2y=secx2sec2xy=1secx2sec2xy=cosx2cos2x
This is the required particular solution of  the given differential equation.

14. (1+x2)dydx+2xy=11+x2;y=0 when x=1

Sol: The given differential equation can be written as
dydx+2xy1+x2=1(1+x2)2
Comparing with the linear differential equation of type dydx+Py=Q we get
P= 2x1+x2 and Q = 11+x2
I.F. =eP dx=e2x1+x2 dx=ed(1+x2)1+x2 dx=elog|x2+1|=x2+1
Hence the general solution of the given differential equation is
y(I.F)=(Q×I.F)+Cy.(1+x2)=1(1+x2)2.(1+x2) dx+Cy.(1+x2)=dx1+x2+Cy.(1+x2)=tan1x+C
given that y=0 when x=1. Putting these values in eq(1) we get
0=tan1+CC+π4=0C=π4
Substituting the value of C in eq(1) we get
y(1+x2)=tan1xπ4
This is the required particular solution of the given differential equation.

15. dydx3ycotx=sin2x; y=2 when x=π2

Sol: Comparing the given equation with the linear differential equation dydx+Py=Q
we get P = 3cotx and Q=sin2x
I.F.=eP dx=e3cotx dx=e3log|sinx|=elog|sinx|3=(sinx)3=1sin3x
Hence the general solution of the equation is given by
y(I.F)=(Q×I.F)+Cy.1sin3x=sin2x.1sin3x dx+Cy.1sin3x=2sinxcosxsin3x dx+Cy.1sin3x=2cosxsin2x dx+Cy.1sin3x=2d(sinx)sin2x dx+Cy.1sin3x=2(sinx)2+12+1+Cy.1sin3x=2(sinx)11+Cy.1sin3x=2sinx+C
given that y =2 when x=π2. Putting these values in eq (1) we get
2.1(sinπ2)3=2sinπ2+C2=2+CC=4
Substituting the value of C in eq(1) we get
y.1sin3x=2sinx+4y=2sin3xsinx+4sin3xy=4sin3x2sin2x
This is the required particular solution of the given differential equation.


16.  Find the equation of a curve through the origin given that the slope of the tangent to the curve at any point (x,y) is equal to the sum of the coordinates of the point.

Sol: We know that slope of any curve at the point (x,y) is given by dydx
According to the question
dydx=x+ydydxy=x
Comparing with the linear differential equation of type dydx+Py=Q we get
P= -1 and Q =x
I.F. =e(1dx)=ex
Hence the solution of eq (1) is given by
y(I.F)=(Q×I.F)+Cy.ex=x.ex+Cy.ex=xex[ddxx.exdx]dx+C(integration by parts)y.ex=xex11.ex1dx+Cy.ex=xex+exdx+Cy.ex=xexex+Cy.ex=ex(x+1)+Cy=ex(x+1)+Cexy=x+1+Cexx+y+1=Cex
given that the curve passes through the origin i.e (0,0). So, y =0 when x=0 . Putting these values in eq(2) we get
0+0+1=Ce0C=1
Substituting the value of C in eq (2) we get
x+y+1=ex
This is the required equation of the curve.

17. Find the equation of a curve passing through the point (0,2) given that the sum of the coordinates of any point on the curve exceeds the magnitude of the slope of the tangent to the curve at that point by 5.

Sol: Let (x,y) be any point on the curve.
According to the question
dydx+5=x+ydydxy=x5
Comparing with the linear differential equation of type dydx+Py=Q we get
P= -1 and Q =x-5
I.F. =e(1dx)=ex
Hence the solution of eq (1) is given by
y(I.F)=(Q×I.F)+Cy.ex=(x5).ex+Cy.ex=x.ex5ex+Cy.ex=xex[ddxx.exdx]dx5ex1+C(integration by parts)y.ex=xex11.ex1dx+5ex+Cy.ex=xex+exdx+5ex+Cy.ex=xexex+5ex+Cy.ex=ex(x+1)+5ex+Cy=ex(x+1)+C+5exexy=(x+1)+Cex+5x+y+1=5+Cex
given that the curve passes through the origin i.e (0,2). So, y =2 when x=0 . Putting these values in eq(2) we get
0+2+1=5+Ce0C=2
Substituting the value of C in eq (2) we get
x+y+1=5+(2)exy=4x2ex
This is the required equation of the curve.

18. The Integrating factor of the differential equation xdydxy=2x2 is

(A) ex   (B) ey     (C) 1x     (D) x

Sol: The given equation can be written as dydx1xy=2x
Comparing with the linear differential equation of type dydx+Py=Q we get
 P = 1x
I.F. = eP dx=e1x dx=elogx=elogx1=x1=1x
The correct answer is option (C)

19. The Integrating Factor of the differential equation
(1y2)dydx+yx=ay(1<y<1) is

(A) 1y21     (B) 1y21    (C) 11y2    (D) 11y2

Sol: The given equation can be written as dxdy+y1y2x=ay1y2
Comparing with the linear differential equation of type dxdy+Px=Q we get
 P = y1y2
I.F. = eP dx=ey1y2 dx=e122yy21 dx=e12log|y21|=elog|y21|12=(y21)12=1y21
The correct answer is option (B)


                                       Class 12 Ncert Solutions Maths Differential Equations

Previous Exercises
Exercise 9.1 &9.2

Exercise 9.4
Exercise 9.5

Other Chapters
Chapter 3 Matrices
Chapter 11 Three dimensional geometry

Ncert Solutions for other subjects.

Subject : General English


Question Papers

Comments

Popular posts from this blog

Class 12 Ncert Solutions English Flamingo The Memoirs of a Chota Sahib

                                                               The Memoirs of a Chota Sahib                                                                                by John Rowntree Think as you Read  Answers for other Lessons A Thing of Beauty The Roadside Stand The Last Lesson Going Places 1. Briefly describe the scene observed by the author from the veranda of his bungalow on the bank of the Brahmaputra. Ans: The author Rowntree described that from the veranda of his bungalow he had a splendid view of the river and its shipping and, beyond, the Himalayas. In the forground was Peacock Island, with ...

Class 12 Ncert Solutions for English Flamingo The Last Lesson

Class 12 Ncert Solutions for English Flamingo The Last Lesson Think as you read 1. What was Franz expected to be prepared with for school that day? Ans. Franz was expected to be prepared with participles that day as M.Hamel would question them on participles. But Franz had not learnt anything about participles. 2. What did Franz notice that was unusual about the school that day? Ans.  Franz noticed that the school was  calm and quiet like a Sunday morning. On any other day  there would be great commotion in the school caused by the opening and closing of the desks,lessons being repeated loudly in unison and rapping of the teacher's ruler on the table. 3. What had been put up in the bulletin-board? Ans.  Orders had been put up in the bulletin board to teach German  in the schools of Alsace and Lorraine by the Germans. 4. What changes did the order from Berlin cause in school that day? Ans. Because of the order that came from Berlin M.Hamel was go...

Class 12 English Ncert solutions The Roadside Stand

Class 12 English Ncert solutions The Roadside Stand                                                                                                                                       The Roadside Stand                                                                                     by Robert Frost Think it out 1. The city folk who drove through the countryside hardly paid any heed to the roadside stand or to the people who ran it. ...