Alternative English Year - 2017 Full Marks : 100
Class 12 Ncert Solutions Maths Differential Equations
Exercise 9.6
Previous Exercises
Exercise 9.1 &9.2
Exercise 9.4
Exercise 9.5
For each of the differential equations given in Exercises 1 to 12, find the general solution:
1. dydx+2y=sinx
Sol: Comparing the given differential equation with dydx+Py=Q
we get P=2 and Q=sinx
Now, I.F(integrating factor) =e∫P dx=e∫2dx=e2x
Hence the solution of the equation is given by
y(I.F)=∫(Q×I.F) dx+Cy.e2x=∫e2xsinx dx+C
Let I = ∫e2xsinx dx
⟹ I=sinxe2x2−∫cosxe2x2 dx(Integrating by parts)
⟹ I=12sinxe2x−12[cosxe2x2−∫(−sinx)e2x2 dx]
⟹ I= 12sinxe2x−14cosxe2x−14∫sinxe2x2 dx
⟹ I= 12sinxe2x−14cosxe2x−I4
⟹I+I4=14(2sinxe2x−cosxe2x)
⟹I=15(2sinx−cosx)e2x
Substituting the value of I in eq (1) we get
y.e2x=15(2sinx−cosx)e2x+C
⟹y=15(2sinx−cosx)+Ce−2x
This is the required general solution of the given differential equation.
2. dydx+3y=e−2x
Sol: Comparing the given differential equation with dydx+Py=Q
we get P=3 and Q=e^{-2x}
Thus I.F = e∫P dx=e∫3 dx=e3x
Hence the solution of the equation is
y(I.F)=∫(Q×I.F) dx+Cy.e3x=∫(e−2x×e3x) dx+Cy.e3x=∫ex dx+Cy.e3x=ex+Cy=exe3x+Ce3xy=e−2x+Ce−3x
3. dydx+yx=x2
Sol: Comparing the given equation with dydx+Py=Q
we get P = 1x and Q=x2
∴ I.F = e∫1x dx=elogx=x
Hence the solution of the equation is given by
y(I.F)=∫(Q×I.F) dx+C⟹y.x=∫(x.x3)+C⟹xy=∫x3 dx+C⟹xy=x44+C
4. dydx+(secx)y=tanx
Sol: Comparing the given equation with dydx+Py=Q
we get P = secx and Q = tanx
∴ I.F. =e∫secx=elog|secx+tanx|=secx+tanx
Hence the solution of the equation is given by
y(I.F)=∫(Q×I.F) dx+Cy.(secx+tanx)=∫(tanx×(secx+tanx)) dx+Cy.(secx+tanx)=∫tanxsecx dx+∫tan2x dx+Cy.(secx+tanx)=secx+∫(sec2x−1) dx+Cy.(secx+tanx)=secx+∫(sec2x) dx−∫1 dx+Cy.(secx+tanx)=secx+tanx−x+C
5. cos2xdydx+y=tanx
Sol: The given equation can be written as
dydx+sec2x.y=tanxsec2x
Comparing the equation with dydx+Py=Q
we get P =sec2x and Q =tanxsec2x
∴ I.F. = e∫sec2x dx=etanx
Hence the solution of the differential equation is
y(I.F)=∫(Q×I.F) dx+Cy.etanx=∫(tanxsec2x×etanx) dx+Cy.etanx=∫etanxtanx d(tanx)+Cy.etanx=tanx.etanx−∫dd(tanx)(tanx)etanx d(tanx)+Cy.etanx=tanx.etanx−∫etanx d(tanx)+Cy.etanx=tanx.etanx−etanx+Cy.etanx=(tanx−1) etanx+Cy=(tanx−1)etanxetanx+Cetanxy=(tanx−1)+Ce−tanx
6. xdydx+2y=x2logx
Sol: The given equation can be written as
dydx+2xy=xlogx
Comparing with the equation dydx+Py=Q
we get P =2x and Q=xlogx
∴ I.F = e∫P dx=e2x dx=e2logx=elogx2=x2
Hence the solution of the differential equation is
y(I.F)=∫(Q×I.F) dx+Cy.x2=∫x2(x logx) dx+Cy.x2=∫x3logx dx+Cy.x2=logx.x44−∫1x.x44 dx+C(integrating by parts)y.x2=logx.x44−14∫x3 dx+Cy.x2=logx.x44−14x44+Cy.x2=logx.x44−x416+Cy=logx.x24−x216+Cx−2y=x216(4log|x|−1)+Cx−2
7. x logx dydx+y=2x logx
Sol: The given differential equation can be written as
dydx+1xlogxy=2xlogxxlogxdydx+1xlogxy=2x2
Comparing with the equation dydx+Py=Q
we get P=1xlogx and Q =2x2
∴ I.F. = e∫P dx=e∫1xlogx dx=e∫d(logx)logx=elog|logx|=logx
Hence the solution of the given differential is
y(I.F)=∫(Q×I.F) dx+Cy.logx=∫logx2x2+Cy.logx=2∫x−2 logx dx+Cy.logx=2logx.∫x−2−∫[ddx(logx).∫x−2 dx] dx+C(integrating by parts)y.logx=2logxx−1−1−∫1x.x−1−1 dx+Cy.logx=−21xlogx+∫x−2 dx+Cy.logx=−2logxx+x−1−1+Cy.logx=−2logxx−1x+Cy.logx=−2x(log|x|+1)+C
8. (1+x2) dy+2xy dx=cotx dx(x≠0)
Sol: The given equation can be written as dydx+2x1+x2y=cotx1+x2
Comparing the above equation with dydx+Py=Q
we get
P=2x1+x2 and Q=cotx1+x2
∴ I.F. = e∫P dx=e∫2x1+x2 dx=e∫d(1+x2)1+x2 dx=elog|x2+1|=x2+1
Hence the solution of the differential equation is
y(I.F)=∫(Q×I.F) dx+Cy.(x2+1)=∫(x2+1)cotxx2+1 dx+Cy.(x2+1)=∫cotx dx+Cy.(x2+1)=log|sinx|+Cy=log|sinx|x2+1+cx2+1y=(x2+1)−1 log|sinx|+C(x2+1)−1
9. xdydx+y−x+xycotx=0(x≠0)
Sol: The given equation can be written as
xdydx+y(1+xcotx)−x=0dydx+(1x+cotx)y−1=0dydx+(1x+cotx)y=1
Comparing with the equation dydx+Py=Q we get
P = 1x+cotx and Q =1
∴ I.F. =e∫Pdx=e∫(1x+cotx) dx=elog|x|+log|sinx|=elog|xsinx|=xsinx
Hence the solution of the differential equation is
y(I.F)=∫(Q×I.F) dx+Cy.(xsinx)=∫xsinx.1 dx+Cy.(xsinx)=∫xsinx dx+Cy.(xsinx)=x(−cosx)−∫1.(−cosx) dx+C(integration by parts)y.(xsinx)=−xcosx+∫cosx dx+Cy.(xsinx)=−xsinx+sinx+Cy=−xcosxxsinx+sinxxsinx+Cxsinxy=−cosxsinx+1x+Cxsinxy=−cotx+1x+Cxsinx
10. (x+y)dydx=1
Sol: The given equation can be written in the form
dydx=1x+ydxdy=x+ydxdy−x=y
This is a linear differential equation of the type dxdy+Px=Q
Comparing the equation we get P = -1 and Q = y
∴ I.F. =e∫(−1) dx=e−∫dx=e−x
Hence the solution of the equation is
x.(I.F)=∫(Q×I.F)+Cx.e−x=∫y.e−x+Cx.e−x=y∫e−x−∫[ddyy.∫e−x dx] dx+C(integration by parts)x.e−x=ye−x−1−∫1.e−x−1 dx+Cx.e−x=−y.e−x+∫e−x+Cx.e−x=−y.e−x+e−x−1+Cx.e−x=−y.e−x−e−x+Cx=−y.e−x−e−x+Ce−xx=−y−1+Cexx+y+1=Cex
11. y dx+(x2−y2) dy=0
Sol: The given equation can be written as
dx+xy dy−y dy=0dxdy=−xy+ydxdy+xy=y
This is a linear differential equation of the form dxdy+Px=Q where P =1y and Q = y.
∴ I.F. =e∫Pdy=e∫1y dy=elogy=y
Hence the solution of the equation is
x.(I.F)=∫(Q×I.F)+Cx.y=∫y.y dy+Cxy=∫y2 dy+Cxy=y33+C
12. (x+3y2)dydx=y
Sol: The given equation can be written as
dydx=yx+3y2dxdy=x+3y2ydxdy=xy+3ydxdy−xy=3y
This is a linear differential equation of the form dxdy+Px=Q
where P =−1y and Q = 3y.
∴ I.F. =e∫P dy=e∫−1y dy=e−logy=elogy−1=y−1=1y
Hence the solution of the equation is
x.(I.F)=∫(Q×I.F)+Cx.1y=∫(3y.1y) dy+Cx.1y=∫3 dy+Cx.1y=3y+Cx=3y2+yC
For each of the differential equations given in Exercises 13 to 15, find a particular solution satisfying the given condition:
13. dydx+2ytanx=sinx;y=0 when x=π3
Sol: The given equation is a linear differential equation of type dydx+Py=Q
Here P = 2tanx and Q =sinx
∴ I.F. = e∫2tanx dx=e2log|secx=elog|secx|2=(secx)2
Hence the general solution of the given equation is
y(I.F)=∫(Q×I.F)+Cy.sec2x=∫(sec2x)sinx dx+Cy.sec2x=∫sinxcosxsecx dx+Cy.sec2x=∫tanxsecx dx+Cy.sec2x=secx+C
Given that y =0 when x=π3. Putting these values in the above equation we get
0=secπ3+CC=−2
Substituting the value of C in eq (1) we get
y.sec2x=secx−2y=secx−2sec2xy=1secx−2sec2xy=cosx−2cos2x
This is the required particular solution of the given differential equation.
14. (1+x2)dydx+2xy=11+x2;y=0 when x=1
Sol: The given differential equation can be written as
dydx+2xy1+x2=1(1+x2)2
Comparing with the linear differential equation of type dydx+Py=Q we get
P= 2x1+x2 and Q = 11+x2
∴ I.F. =e∫P dx=e2x1+x2 dx=e∫d(1+x2)1+x2 dx=elog|x2+1|=x2+1
Hence the general solution of the given differential equation is
y(I.F)=∫(Q×I.F)+Cy.(1+x2)=∫1(1+x2)2.(1+x2) dx+Cy.(1+x2)=∫dx1+x2+Cy.(1+x2)=tan−1x+C
given that y=0 when x=1. Putting these values in eq(1) we get
0=tan−1+CC+π4=0C=−π4
Substituting the value of C in eq(1) we get
y(1+x2)=tan−1x−π4
This is the required particular solution of the given differential equation.
15. dydx−3ycotx=sin2x; y=2 when x=π2
Sol: Comparing the given equation with the linear differential equation dydx+Py=Q
we get P = −3cotx and Q=sin2x
∴ I.F.=e∫P dx=e∫−3cotx dx=e−3log|sinx|=elog|sinx|−3=(sinx)−3=1sin3x
Hence the general solution of the equation is given by
y(I.F)=∫(Q×I.F)+Cy.1sin3x=∫sin2x.1sin3x dx+Cy.1sin3x=∫2sinxcosxsin3x dx+Cy.1sin3x=2∫cosxsin2x dx+Cy.1sin3x=2∫d(sinx)sin2x dx+Cy.1sin3x=2(sinx)−2+1−2+1+Cy.1sin3x=2(sinx)−1−1+Cy.1sin3x=−2sinx+C
given that y =2 when x=π2. Putting these values in eq (1) we get
2.1(sinπ2)3=−2sinπ2+C2=−2+CC=4
Substituting the value of C in eq(1) we get
y.1sin3x=−2sinx+4y=−2sin3xsinx+4sin3xy=4sin3x−2sin2x
This is the required particular solution of the given differential equation.
16. Find the equation of a curve through the origin given that the slope of the tangent to the curve at any point (x,y) is equal to the sum of the coordinates of the point.
Sol: We know that slope of any curve at the point (x,y) is given by dydx
According to the question
dydx=x+ydydx−y=x
Comparing with the linear differential equation of type dydx+Py=Q we get
P= -1 and Q =x
∴ I.F. =e∫(−1dx)=e−x
Hence the solution of eq (1) is given by
y(I.F)=∫(Q×I.F)+Cy.e−x=∫x.e−x+Cy.e−x=x∫e−x−∫[ddxx.∫e−xdx]dx+C(integration by parts)y.e−x=xe−x−1−∫1.e−x−1dx+Cy.e−x=−xe−x+∫e−xdx+Cy.e−x=−xe−x−e−x+Cy.e−x=−e−x(x+1)+Cy=−e−x(x+1)+Ce−xy=x+1+Cexx+y+1=Cex
given that the curve passes through the origin i.e (0,0). So, y =0 when x=0 . Putting these values in eq(2) we get
0+0+1=Ce0C=1
Substituting the value of C in eq (2) we get
x+y+1=ex
This is the required equation of the curve.
17. Find the equation of a curve passing through the point (0,2) given that the sum of the coordinates of any point on the curve exceeds the magnitude of the slope of the tangent to the curve at that point by 5.
Sol: Let (x,y) be any point on the curve.
According to the question
dydx+5=x+ydydx−y=x−5
Comparing with the linear differential equation of type dydx+Py=Q we get
P= -1 and Q =x-5
∴ I.F. =e∫(−1dx)=e−x
Hence the solution of eq (1) is given by
y(I.F)=∫(Q×I.F)+Cy.e−x=∫(x−5).e−x+Cy.e−x=∫x.e−x−∫5e−x+Cy.e−x=x∫e−x−∫[ddxx.∫e−xdx]dx−5e−x−1+C(integration by parts)y.e−x=xe−x−1−∫1.e−x−1dx+5e−x+Cy.e−x=−xe−x+∫e−xdx+5e−x+Cy.e−x=−xe−x−e−x+5e−x+Cy.e−x=−e−x(x+1)+5e−x+Cy=−e−x(x+1)+C+5e−xe−xy=−(x+1)+Cex+5x+y+1=5+Cex
given that the curve passes through the origin i.e (0,2). So, y =2 when x=0 . Putting these values in eq(2) we get
0+2+1=5+Ce0C=−2
Substituting the value of C in eq (2) we get
x+y+1=5+(−2)exy=4−x−2ex
This is the required equation of the curve.
18. The Integrating factor of the differential equation xdydx−y=2x2 is
(A) e−x (B) e−y (C) 1x (D) x
Sol: The given equation can be written as dydx−1xy=2x
Comparing with the linear differential equation of type dydx+Py=Q we get
P = −1x
∴ I.F. = e∫P dx=e∫−1x dx=e−logx=elogx−1=x−1=1x
The correct answer is option (C)
19. The Integrating Factor of the differential equation
(1−y2)dydx+yx=ay(−1<y<1) is
(A) 1y2−1 (B) 1√y2−1 (C) 11−y2 (D) 1√1−y2
Sol: The given equation can be written as dxdy+y1−y2x=ay1−y2
Comparing with the linear differential equation of type dxdy+Px=Q we get
P = y1−y2
∴ I.F. = e∫P dx=e∫y1−y2 dx=e−12∫2yy2−1 dx=e−12log|y2−1|=elog|y2−1|−12=(y2−1)−12=1√y2−1
The correct answer is option (B)
Class 12 Ncert Solutions Maths Differential Equations
Previous Exercises
Exercise 9.1 &9.2
Exercise 9.4
Exercise 9.5
Other Chapters
Chapter 3 Matrices
Chapter 11 Three dimensional geometry
Exercise 9.6
Previous Exercises
Exercise 9.1 &9.2
Exercise 9.4
Exercise 9.5
For each of the differential equations given in Exercises 1 to 12, find the general solution:
1. dydx+2y=sinx
Sol: Comparing the given differential equation with dydx+Py=Q
we get P=2 and Q=sinx
Now, I.F(integrating factor) =e∫P dx=e∫2dx=e2x
Hence the solution of the equation is given by
y(I.F)=∫(Q×I.F) dx+Cy.e2x=∫e2xsinx dx+C
Let I = ∫e2xsinx dx
⟹ I=sinxe2x2−∫cosxe2x2 dx(Integrating by parts)
⟹ I=12sinxe2x−12[cosxe2x2−∫(−sinx)e2x2 dx]
⟹ I= 12sinxe2x−14cosxe2x−14∫sinxe2x2 dx
⟹ I= 12sinxe2x−14cosxe2x−I4
⟹I+I4=14(2sinxe2x−cosxe2x)
⟹I=15(2sinx−cosx)e2x
Substituting the value of I in eq (1) we get
y.e2x=15(2sinx−cosx)e2x+C
⟹y=15(2sinx−cosx)+Ce−2x
This is the required general solution of the given differential equation.
2. dydx+3y=e−2x
Sol: Comparing the given differential equation with dydx+Py=Q
we get P=3 and Q=e^{-2x}
Thus I.F = e∫P dx=e∫3 dx=e3x
Hence the solution of the equation is
y(I.F)=∫(Q×I.F) dx+Cy.e3x=∫(e−2x×e3x) dx+Cy.e3x=∫ex dx+Cy.e3x=ex+Cy=exe3x+Ce3xy=e−2x+Ce−3x
3. dydx+yx=x2
Sol: Comparing the given equation with dydx+Py=Q
we get P = 1x and Q=x2
∴ I.F = e∫1x dx=elogx=x
Hence the solution of the equation is given by
y(I.F)=∫(Q×I.F) dx+C⟹y.x=∫(x.x3)+C⟹xy=∫x3 dx+C⟹xy=x44+C
4. dydx+(secx)y=tanx
Sol: Comparing the given equation with dydx+Py=Q
we get P = secx and Q = tanx
∴ I.F. =e∫secx=elog|secx+tanx|=secx+tanx
Hence the solution of the equation is given by
y(I.F)=∫(Q×I.F) dx+Cy.(secx+tanx)=∫(tanx×(secx+tanx)) dx+Cy.(secx+tanx)=∫tanxsecx dx+∫tan2x dx+Cy.(secx+tanx)=secx+∫(sec2x−1) dx+Cy.(secx+tanx)=secx+∫(sec2x) dx−∫1 dx+Cy.(secx+tanx)=secx+tanx−x+C
5. cos2xdydx+y=tanx
Sol: The given equation can be written as
dydx+sec2x.y=tanxsec2x
Comparing the equation with dydx+Py=Q
we get P =sec2x and Q =tanxsec2x
∴ I.F. = e∫sec2x dx=etanx
Hence the solution of the differential equation is
y(I.F)=∫(Q×I.F) dx+Cy.etanx=∫(tanxsec2x×etanx) dx+Cy.etanx=∫etanxtanx d(tanx)+Cy.etanx=tanx.etanx−∫dd(tanx)(tanx)etanx d(tanx)+Cy.etanx=tanx.etanx−∫etanx d(tanx)+Cy.etanx=tanx.etanx−etanx+Cy.etanx=(tanx−1) etanx+Cy=(tanx−1)etanxetanx+Cetanxy=(tanx−1)+Ce−tanx
6. xdydx+2y=x2logx
Sol: The given equation can be written as
dydx+2xy=xlogx
Comparing with the equation dydx+Py=Q
we get P =2x and Q=xlogx
∴ I.F = e∫P dx=e2x dx=e2logx=elogx2=x2
Hence the solution of the differential equation is
y(I.F)=∫(Q×I.F) dx+Cy.x2=∫x2(x logx) dx+Cy.x2=∫x3logx dx+Cy.x2=logx.x44−∫1x.x44 dx+C(integrating by parts)y.x2=logx.x44−14∫x3 dx+Cy.x2=logx.x44−14x44+Cy.x2=logx.x44−x416+Cy=logx.x24−x216+Cx−2y=x216(4log|x|−1)+Cx−2
7. x logx dydx+y=2x logx
Sol: The given differential equation can be written as
dydx+1xlogxy=2xlogxxlogxdydx+1xlogxy=2x2
Comparing with the equation dydx+Py=Q
we get P=1xlogx and Q =2x2
∴ I.F. = e∫P dx=e∫1xlogx dx=e∫d(logx)logx=elog|logx|=logx
Hence the solution of the given differential is
y(I.F)=∫(Q×I.F) dx+Cy.logx=∫logx2x2+Cy.logx=2∫x−2 logx dx+Cy.logx=2logx.∫x−2−∫[ddx(logx).∫x−2 dx] dx+C(integrating by parts)y.logx=2logxx−1−1−∫1x.x−1−1 dx+Cy.logx=−21xlogx+∫x−2 dx+Cy.logx=−2logxx+x−1−1+Cy.logx=−2logxx−1x+Cy.logx=−2x(log|x|+1)+C
8. (1+x2) dy+2xy dx=cotx dx(x≠0)
Sol: The given equation can be written as dydx+2x1+x2y=cotx1+x2
Comparing the above equation with dydx+Py=Q
we get
P=2x1+x2 and Q=cotx1+x2
∴ I.F. = e∫P dx=e∫2x1+x2 dx=e∫d(1+x2)1+x2 dx=elog|x2+1|=x2+1
Hence the solution of the differential equation is
y(I.F)=∫(Q×I.F) dx+Cy.(x2+1)=∫(x2+1)cotxx2+1 dx+Cy.(x2+1)=∫cotx dx+Cy.(x2+1)=log|sinx|+Cy=log|sinx|x2+1+cx2+1y=(x2+1)−1 log|sinx|+C(x2+1)−1
9. xdydx+y−x+xycotx=0(x≠0)
Sol: The given equation can be written as
xdydx+y(1+xcotx)−x=0dydx+(1x+cotx)y−1=0dydx+(1x+cotx)y=1
Comparing with the equation dydx+Py=Q we get
P = 1x+cotx and Q =1
∴ I.F. =e∫Pdx=e∫(1x+cotx) dx=elog|x|+log|sinx|=elog|xsinx|=xsinx
Hence the solution of the differential equation is
y(I.F)=∫(Q×I.F) dx+Cy.(xsinx)=∫xsinx.1 dx+Cy.(xsinx)=∫xsinx dx+Cy.(xsinx)=x(−cosx)−∫1.(−cosx) dx+C(integration by parts)y.(xsinx)=−xcosx+∫cosx dx+Cy.(xsinx)=−xsinx+sinx+Cy=−xcosxxsinx+sinxxsinx+Cxsinxy=−cosxsinx+1x+Cxsinxy=−cotx+1x+Cxsinx
10. (x+y)dydx=1
Sol: The given equation can be written in the form
dydx=1x+ydxdy=x+ydxdy−x=y
This is a linear differential equation of the type dxdy+Px=Q
Comparing the equation we get P = -1 and Q = y
∴ I.F. =e∫(−1) dx=e−∫dx=e−x
Hence the solution of the equation is
x.(I.F)=∫(Q×I.F)+Cx.e−x=∫y.e−x+Cx.e−x=y∫e−x−∫[ddyy.∫e−x dx] dx+C(integration by parts)x.e−x=ye−x−1−∫1.e−x−1 dx+Cx.e−x=−y.e−x+∫e−x+Cx.e−x=−y.e−x+e−x−1+Cx.e−x=−y.e−x−e−x+Cx=−y.e−x−e−x+Ce−xx=−y−1+Cexx+y+1=Cex
11. y dx+(x2−y2) dy=0
Sol: The given equation can be written as
dx+xy dy−y dy=0dxdy=−xy+ydxdy+xy=y
This is a linear differential equation of the form dxdy+Px=Q where P =1y and Q = y.
∴ I.F. =e∫Pdy=e∫1y dy=elogy=y
Hence the solution of the equation is
x.(I.F)=∫(Q×I.F)+Cx.y=∫y.y dy+Cxy=∫y2 dy+Cxy=y33+C
12. (x+3y2)dydx=y
Sol: The given equation can be written as
dydx=yx+3y2dxdy=x+3y2ydxdy=xy+3ydxdy−xy=3y
This is a linear differential equation of the form dxdy+Px=Q
where P =−1y and Q = 3y.
∴ I.F. =e∫P dy=e∫−1y dy=e−logy=elogy−1=y−1=1y
Hence the solution of the equation is
x.(I.F)=∫(Q×I.F)+Cx.1y=∫(3y.1y) dy+Cx.1y=∫3 dy+Cx.1y=3y+Cx=3y2+yC
For each of the differential equations given in Exercises 13 to 15, find a particular solution satisfying the given condition:
13. dydx+2ytanx=sinx;y=0 when x=π3
Sol: The given equation is a linear differential equation of type dydx+Py=Q
Here P = 2tanx and Q =sinx
∴ I.F. = e∫2tanx dx=e2log|secx=elog|secx|2=(secx)2
Hence the general solution of the given equation is
y(I.F)=∫(Q×I.F)+Cy.sec2x=∫(sec2x)sinx dx+Cy.sec2x=∫sinxcosxsecx dx+Cy.sec2x=∫tanxsecx dx+Cy.sec2x=secx+C
Given that y =0 when x=π3. Putting these values in the above equation we get
0=secπ3+CC=−2
Substituting the value of C in eq (1) we get
y.sec2x=secx−2y=secx−2sec2xy=1secx−2sec2xy=cosx−2cos2x
This is the required particular solution of the given differential equation.
14. (1+x2)dydx+2xy=11+x2;y=0 when x=1
Sol: The given differential equation can be written as
dydx+2xy1+x2=1(1+x2)2
Comparing with the linear differential equation of type dydx+Py=Q we get
P= 2x1+x2 and Q = 11+x2
∴ I.F. =e∫P dx=e2x1+x2 dx=e∫d(1+x2)1+x2 dx=elog|x2+1|=x2+1
Hence the general solution of the given differential equation is
y(I.F)=∫(Q×I.F)+Cy.(1+x2)=∫1(1+x2)2.(1+x2) dx+Cy.(1+x2)=∫dx1+x2+Cy.(1+x2)=tan−1x+C
given that y=0 when x=1. Putting these values in eq(1) we get
0=tan−1+CC+π4=0C=−π4
Substituting the value of C in eq(1) we get
y(1+x2)=tan−1x−π4
This is the required particular solution of the given differential equation.
15. dydx−3ycotx=sin2x; y=2 when x=π2
Sol: Comparing the given equation with the linear differential equation dydx+Py=Q
we get P = −3cotx and Q=sin2x
∴ I.F.=e∫P dx=e∫−3cotx dx=e−3log|sinx|=elog|sinx|−3=(sinx)−3=1sin3x
Hence the general solution of the equation is given by
y(I.F)=∫(Q×I.F)+Cy.1sin3x=∫sin2x.1sin3x dx+Cy.1sin3x=∫2sinxcosxsin3x dx+Cy.1sin3x=2∫cosxsin2x dx+Cy.1sin3x=2∫d(sinx)sin2x dx+Cy.1sin3x=2(sinx)−2+1−2+1+Cy.1sin3x=2(sinx)−1−1+Cy.1sin3x=−2sinx+C
given that y =2 when x=π2. Putting these values in eq (1) we get
2.1(sinπ2)3=−2sinπ2+C2=−2+CC=4
Substituting the value of C in eq(1) we get
y.1sin3x=−2sinx+4y=−2sin3xsinx+4sin3xy=4sin3x−2sin2x
This is the required particular solution of the given differential equation.
16. Find the equation of a curve through the origin given that the slope of the tangent to the curve at any point (x,y) is equal to the sum of the coordinates of the point.
Sol: We know that slope of any curve at the point (x,y) is given by dydx
According to the question
dydx=x+ydydx−y=x
Comparing with the linear differential equation of type dydx+Py=Q we get
P= -1 and Q =x
∴ I.F. =e∫(−1dx)=e−x
Hence the solution of eq (1) is given by
y(I.F)=∫(Q×I.F)+Cy.e−x=∫x.e−x+Cy.e−x=x∫e−x−∫[ddxx.∫e−xdx]dx+C(integration by parts)y.e−x=xe−x−1−∫1.e−x−1dx+Cy.e−x=−xe−x+∫e−xdx+Cy.e−x=−xe−x−e−x+Cy.e−x=−e−x(x+1)+Cy=−e−x(x+1)+Ce−xy=x+1+Cexx+y+1=Cex
given that the curve passes through the origin i.e (0,0). So, y =0 when x=0 . Putting these values in eq(2) we get
0+0+1=Ce0C=1
Substituting the value of C in eq (2) we get
x+y+1=ex
This is the required equation of the curve.
17. Find the equation of a curve passing through the point (0,2) given that the sum of the coordinates of any point on the curve exceeds the magnitude of the slope of the tangent to the curve at that point by 5.
Sol: Let (x,y) be any point on the curve.
According to the question
dydx+5=x+ydydx−y=x−5
Comparing with the linear differential equation of type dydx+Py=Q we get
P= -1 and Q =x-5
∴ I.F. =e∫(−1dx)=e−x
Hence the solution of eq (1) is given by
y(I.F)=∫(Q×I.F)+Cy.e−x=∫(x−5).e−x+Cy.e−x=∫x.e−x−∫5e−x+Cy.e−x=x∫e−x−∫[ddxx.∫e−xdx]dx−5e−x−1+C(integration by parts)y.e−x=xe−x−1−∫1.e−x−1dx+5e−x+Cy.e−x=−xe−x+∫e−xdx+5e−x+Cy.e−x=−xe−x−e−x+5e−x+Cy.e−x=−e−x(x+1)+5e−x+Cy=−e−x(x+1)+C+5e−xe−xy=−(x+1)+Cex+5x+y+1=5+Cex
given that the curve passes through the origin i.e (0,2). So, y =2 when x=0 . Putting these values in eq(2) we get
0+2+1=5+Ce0C=−2
Substituting the value of C in eq (2) we get
x+y+1=5+(−2)exy=4−x−2ex
This is the required equation of the curve.
18. The Integrating factor of the differential equation xdydx−y=2x2 is
(A) e−x (B) e−y (C) 1x (D) x
Sol: The given equation can be written as dydx−1xy=2x
Comparing with the linear differential equation of type dydx+Py=Q we get
P = −1x
∴ I.F. = e∫P dx=e∫−1x dx=e−logx=elogx−1=x−1=1x
The correct answer is option (C)
19. The Integrating Factor of the differential equation
(1−y2)dydx+yx=ay(−1<y<1) is
(A) 1y2−1 (B) 1√y2−1 (C) 11−y2 (D) 1√1−y2
Sol: The given equation can be written as dxdy+y1−y2x=ay1−y2
Comparing with the linear differential equation of type dxdy+Px=Q we get
P = y1−y2
∴ I.F. = e∫P dx=e∫y1−y2 dx=e−12∫2yy2−1 dx=e−12log|y2−1|=elog|y2−1|−12=(y2−1)−12=1√y2−1
The correct answer is option (B)
Class 12 Ncert Solutions Maths Differential Equations
Previous Exercises
Exercise 9.1 &9.2
Exercise 9.4
Exercise 9.5
Other Chapters
Chapter 3 Matrices
Chapter 11 Three dimensional geometry
Ncert Solutions for other subjects.
Subject : General English
Question Papers
Comments
Post a Comment